Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Clin Transl Oncol ; 26(4): 951-965, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37848695

RESUMO

BACKGROUND: Patients with pancreatic cancer have a dismal prognosis due to tumor cell infiltration and metastasis. Many reports have documented that EMT and PI3K-AKT-mTOR axis control pancreatic cancer cell infiltration and metastasis. Chloroxine is an artificially synthesized antibacterial compound that demonstrated anti-pancreatic cancer effects in our previous drug-screening trial. We have explored the impact of chloroxine on pancreatic cancer growth, infiltration, migration, and apoptosis. METHODS: The proliferation of pancreatic cancer cell lines (PCCs) treated with chloroxine was assessed through real-time cell analysis (RTCA), colony formation assay, CCK-8 assay, as well as immunofluorescence. Chloroxine effects on the infiltrative and migratory capacities of PCCs were assessed via Transwell invasion and scratch experiments. To assess the contents of EMT- and apoptosis-associated proteins in tumor cells, we adopted Western immunoblotting as well as immunofluorescence assays, and flow cytometry to determine chloroxine effects on PCCs apoptosis. The in vivo chloroxine antineoplastic effects were explored in nude mice xenografts. RESULTS: Chloroxine repressed pancreatic cancer cell growth, migration, and infiltration in vitro, as well as in vivo, and stimulated apoptosis of the PCCs. Chloroxine appeared to inhibit PCC growth by Ki67 downregulation; this targeted and inhibited aberrant stimulation of the PI3K-AKT-mTOR signaling cascade, triggered apoptosis in PCC via mitochondria-dependent apoptosis, and modulated the EMT to inhibit PCC infiltration and migration. CONCLUSIONS: Chloroxine targeted and inhibited the PI3K-AKT-mTOR cascade to repress PCCs growth, migration, as well as invasion, and triggered cellular apoptosis. Therefore, chloroxine may constitute a potential antineoplastic drug for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos , Cloroquinolinóis , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cloroquinolinóis/farmacologia , Cloroquinolinóis/uso terapêutico , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
PeerJ ; 10: e14042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132221

RESUMO

Objective: The objective of this study was to investigate the inhibitory effect of sophocarpine on the progression of castration-resistant prostate cancer (CRPC) and the underlying molecular mechanism. Methods: DU145 and PC3 cells (two CRPC cell lines), incubated with different concentrations of sophocarpine, were used. Cell Counting Kit-8 assay, real-time cellular analysis, and colony formation assay were conducted to evaluate the proliferation of CRPC cells. Cytometry flow analysis was performed to evaluate the apoptosis rate of CRPC cells. Wound healing and Transwell invasion assays were performed and the levels of the epithelial-mesenchymal transition (EMT)-related proteins were determined to analyze cell migration and invasion abilities. A xenografted tumor model of nude mice was used to examine the anti-cancer effect of sophocarpine on CRPC. Western blotting was performed to evaluate the activities of the PI3K/AKT/mTOR signaling pathway both in cells and tumor tissues. Results: In vitro tests showed that sophocarpine suppressed the proliferation of CRPC cells, reduced the migration and invasion abilities, and increased the apoptosis rate. In vivo, sophocarpine decreased the weight and volume of tumor tissues. Mechanically, sophocarpine exerted its anti-cancer effects by inactivating PI3K/AKT/mTOR signaling. Conclusion: Sophocarpine inhibited the progression of CRPC by downregulating the PI3K/AKT/mTOR signaling pathway and showed a potential to be an anti-cancer agent against CRPC.


Assuntos
Alcaloides , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Alcaloides/farmacologia
4.
Cell Death Discov ; 8(1): 116, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288541

RESUMO

Patients with pancreatic cancer (PC) show dismal prognosis and high mortality. The development of PC is associated with the overactivation of STAT3. Here, we have determined that the non-peptide small molecule Stattic inhibits PC development by targeting STAT3. In vitro, Stattic treatment time- and dose-dependently inhibited proliferation of pancreatic cancer cells (PCCs) by reducing c-Myc expression and enhancing p53 activity. Consequently, p-Rb, cyclin D1, Chk1, and p21 (cell cycle proteins) were downregulated, and PCCs were arrested at the G1 phase, which was also confirmed by decreased Ki67 expression and unaltered PCNA expression. In addition, Stattic-induced mitochondrial-dependent apoptosis by elevating cleaved caspase-3, and Bax, cytochrome C levels, while reducing expression of Bcl-2, which may be regulated by reduced survivin expression. Further studies showed that Stattic exerts its anti-tumor effect via inhibition of STAT3Y705 phosphorylation and nuclear localization in PCCs. In a nude mouse tumorigenesis model, Stattic inhibited PC growth by antagonizing STAT3Y705 phosphorylation. Interleukin-6 used as a molecule agonist to activate STAT3, as well as overexpression of STAT3, could partially reverse Stattic-mediated anti-proliferation and pro-apoptotic effects of PCCs. Thus, these findings indicate that inhibition of STAT3Y705 phosphorylation by Stattic suppresses PCC proliferation and promotes mitochondrial-mediated apoptosis.

5.
Cell Death Dis ; 13(2): 112, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115509

RESUMO

Niclosamide, a cell-permeable salicylanilide, was approved by the Food and Drug Administration for its anthelmintic efficiency. A growing body of evidence in recent years suggests that niclosamide exhibits potential tumor-suppressive activity. However, the role and molecular mechanism of niclosamide in pancreatic cancer remain unclear. In this study, niclosamide inhibited proliferation of pancreatic cancer cells (PCCs), induced apoptosis via the mitochondrial-mediated pathway, and suppressed cell migration and invasion by antagonizing epithelial-to-mesenchymal transition. Also, niclosamide inhibited tumor growth and metastasis in pancreatic cancer xenograft mouse models. Mechanistically, niclosamide exerted these therapeutic effects via targeting ß-catenin. Niclosamide did not reduce ß-catenin mRNA expression in PCCs, but significantly downregulated its protein level. Moreover, niclosamide induced ß-catenin phosphorylation and protein degradation. Interestingly, niclosamide also induced GSK-3ß phosphorylation, which is involved in the ubiquitination degradation of ß-catenin. Pharmacological activation of ß-catenin by methyl vanillate and ß-catenin overexpression abolished the inhibitory effects of niclosamide. Furthermore, niclosamide potentiated the antitumor effect of the chemotherapy drug gemcitabine and reduced the ability of cancer immune evasion by downregulating the expression levels of PD-L1, which is involved in T cell immunity. Thus, our study indicated that niclosamide induces GSK-ß-mediated ß-catenin degradation to potentiate gemcitabine activity, reduce immune evasion ability, and suppress pancreatic cancer progression. Niclosamide may be a potential therapeutic candidate for pancreatic cancer.


Assuntos
Anti-Helmínticos , Neoplasias Pancreáticas , Animais , Anti-Helmínticos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/análogos & derivados , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Evasão da Resposta Imune , Camundongos , Niclosamida/farmacologia , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Gencitabina , Neoplasias Pancreáticas
6.
Aging (Albany NY) ; 13(23): 25089-25105, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863080

RESUMO

Puerarin (8-(ß-D-glucopyranosyl)-4', 7-dihydroxyisoflavone), a natural flavonoid compound isolated from the traditional Chinese herb Radix puerariae, have been demonstrated has potential anti-tumor effects via induction of apoptosis and inhibition of proliferation. However, the effect and molecular mechanism of puerarin in pancreatic ductal adenocarcinoma (PDAC) remains unknown. In this study, the tumor-suppressive effects of puerarin were determined by both in-vitro and in-vivo assays. The effects of puerarin on the proliferation, apoptosis, migration and invasion of pancreatic cancer cells (PCCs), and tumor growth and metastasis in PDAC xenograft mouse model were performed. Puerarin treatment significantly repressed PCC proliferation. Puerarin induced the mitochondrial-dependent apoptosis of PCCs by causing a Bcl-2/Bax imbalance. Moreover, puerarin inhibited PCC migration and invasion by antagonizing epithelial-mesenchymal transition (EMT). In nude mouse model, PDAC growth and metastasis were reduced by puerarin administration. Mechanistically, puerarin exerted its therapeutic effects on PDAC by suppressing Akt/mTOR signaling. Importantly, puerarin bound to the kinase domain of mTOR protein, affecting the activity of the surrounding amino acid residues associated with the binding of the ATP-Mg2+ complex. Further studies showed that the inhibitory effects of puerarin on PCCs were abolished by a mTOR activator, indicating a crucial role of mTOR in anti-tumor effects of puerarin in PDAC. As a result, puerarin hindered glucose uptake and metabolism by downregulating the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) dependent upon HIF-1α and glucose transporter GLUT1. Therefore, these findings indicated that puerarin has therapeutic potential for the treatment of PDAC by suppressing glucose uptake and metabolism via Akt/mTOR activity.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Glucose/metabolismo , Isoflavonas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Isoflavonas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Transplante de Neoplasias
7.
Aging (Albany NY) ; 13(22): 24753-24767, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821587

RESUMO

Pancreatic cancer is an extremely malignant digestive tract tumor. With the increase of chemotherapeutic resistance of pancreatic cancer, clinical treatment is in a dilemma. Hence, it is pivotal to design an effective drug for treating individuals with pancreatic cancer. Fisetin extracted from vegetables, as well as fruits was explored to possess antioxidant, anti-cancer, anti-inflammatory along with anti-microbial properties. Nonetheless, there is limited research focusing on the utility of fisetin as an inhibitor of pancreatic cancer. Similarly, the mechanism through which Fisetin dampens pancreatic cancer remains unknown. This research work systematically evaluated the possible anti-cancer influences of fisetin in pancreatic cancer, as well as explored its responsible molecular mechanism. Our data revealed that fisetin obviously dampens pancreatic cancer progress in vitro along with in vivo dose-dependently. Furthermore, we established that fisetin repressed pancreatic cancer via explicitly targeting PI3K/AKT/mTOR signaling cascade and not the JAK2 cascade. Our data clarified that fisetin is a prospective anti-cancer drug for pancreatic cancer, as well as indicated the distinct molecular target of fisetin.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonóis/farmacologia , Neoplasias Pancreáticas , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Front Cell Dev Biol ; 9: 659680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368121

RESUMO

NAP1L1 has been reported to be significantly involved in the carcinogenesis of hepatocellular carcinoma (HCC). Yet, its detailed molecular basis is still to be determined. Based on the analysis of The Cancer Genome Atlas (TCGA) database, NAP1L1 mRNA was found to be upregulated and predicted the poor prognosis initially. Subsequently, consistent with the prediction, the upregulated expression of NAP1L1 mRNA and protein levels was confirmed by quantitative polymerase chain reaction (qPCR), Western blot, and immunohistochemistry assays. Upregulated NAP1L1 protein positively promoted the disease progression and poor prognosis of HCC. In addition, NAP1L1 protein expression was considered as an independent prognostic factor in HCC. Inhibition of NAP1L1 expression by siRNA or shRNA pathway significantly reduced the cell proliferation and cell cycle transformation in vitro and in vivo. Mechanism analysis first showed that the function of NAP1L1 was to recruit hepatoma-derived growth factor (HDGF), an oncogene candidate widely documented in tumors. Furthermore, the latter interacted with c-Jun, a key oncogenic transcription factor that can induce the expression of cell cycle factors and thus stimulate the cell growth in HCC. Finally, transfecting HDGF or c-Jun could reverse the suppressive effects on HCC growth in NAP1L1-suppressed HCC cells. Our data indicate that NAP1L1 is a potential oncogene and acts via recruiting HDGF/c-Jun in HCC.

9.
Aging (Albany NY) ; 13(14): 18545-18563, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320467

RESUMO

Fraxetin, a natural product isolated and purified from the bark of Fraxinus bungeana A.DC., has anti-inflammatory, analgesic, and anti-dysenteric activities. This study aimed to investigate the anti-tumor effects of fraxetin in pancreatic ductal adenocarcinoma (PDA). The effects of fraxetin on the malignant biological behavior of PDA were evaluated. Besides, the effects of fraxetin on the sensitivity of PCCs to gemcitabine, angiogenesis, the epithelial-mesenchymal transition (EMT), glucose metabolism, reactive oxygen species (ROS), and STAT3 activity were analyzed. By reversing the EMT, fraxetin suppressed proliferation, invasion, and migration, and induced mitochondrial-dependent apoptosis in PCCs. Also, treatment with fraxetin inhibited PDA growth and metastasis in nude mouse models. Furthermore, fraxetin made PCCs more sensitive to the chemotherapy drug gemcitabine. Mechanically, fraxetin treatment suppressed oncogenic KRAS-triggered STAT3 activation in PCCs and PDA tissues. Fraxetin shows significant interactions with STAT3 Src Homology 2 (SH2) domain residues, thereby preventing its homo-dimer formation, which then blocks the activation of downstream signal pathways. The anti-tumor activity of fraxetin in PDA was functionally rescued by a STAT3 activator colivelin. As a result, fraxetin hindered hypoxia-induced angiogenesis by decreasing HIF-1α and VEGFA expression, controlled glucose metabolism by reducing GLUT1 expression, inhibited the EMT by blocking the Slug-E-cadherin axis, and drove ROS-mediated apoptosis by regulating the STAT3-Ref1 axis. In conclusion, fraxetin enhances the anti-tumor activity of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation.


Assuntos
Cumarínicos/farmacologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cumarínicos/química , Desoxicitidina/farmacologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina , Neoplasias Pancreáticas
10.
Biochem Pharmacol ; 183: 114344, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221275

RESUMO

Renal fibrosis is a frequent axis contributing to the occurrence of end-stage nephropathy. Previously, it has been reported that atractylenolide Ⅰ (ATL-1), a natural compound extracted from Atractylodes macrocephala, has anti-cancer and antioxidant effects. However, the renal anti-fibrotic effects of action remain unclear. In this study, the anti-fibrotic effects of ATL-1 were examined in fibroblasts, tubular epithelial cells (TECs) triggered by TGF-ß1 in vitro, and using a unilateral ureteral obstruction (UUO) mouse model in vivo. We found that ATL-1 represses the myofibroblastic phenotype and fibrosis development in UUO kidneys by targeting the fibroblast-myofibroblast differentiation (FMD), as well as epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of ATL-1 were associated with reduced cell growth in the interstitium and tubules, leading to suppression of the proliferation-linked cascades activity consisting of JAK2/STAT3, PI3K/Akt, p38 MAPK, and Wnt/ß-catenin pathways. Besides, ATL-1 treatment repressed TGF-ß1-triggered FMD and the myofibroblastic phenotype in fibroblasts by antagonizing the activation of proliferation-linked cascades. Likewise, TGF-ß1-triggered excessive activation of the proliferation-linked signaling in TECs triggered EMT. The myofibroblastic phenotype was repressed by ATL-1. The anti-fibrotic and anti-proliferative effects of ATL-1 were linked to the inactivation of Smad2/3 signaling, partially reversing FMD, as well as EMT and the repression of the myofibroblastic phenotype. Thus, the inhibition of myofibroblastic phenotype and fibrosis development in vivo and in vitro through proliferation-linked cascades of ATL-1 makes it a prospective therapeutic bio-agent to prevent renal fibrosis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Lactonas/uso terapêutico , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/patologia , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/patologia , Fenótipo , Ratos , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Cell Biol Toxicol ; 37(3): 479-496, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33070227

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is an aggressive type of malignant tumor with a poor prognosis and high mortality. Aberrant activation of hedgehog signaling plays a crucial role in the maintenance and progression of PDA. Here, we report that the dietary bioflavonoid quercetin has therapeutic potential for PDA by targeting sonic hedgehog (SHH) signaling. The effects of quercetin on the proliferation, apoptosis, migration, and invasion of pancreatic cancer cells (PCCs) and tumor growth and metastasis in PDA xenograft mouse models were evaluated. Additionally, SHH signaling activity was determined. Quercetin significantly inhibited PCC proliferation by downregulating c-Myc expression. In addition, quercetin suppressed epithelial-mesenchymal transition (EMT) by reducing TGF-ß1 level, which resulted in inhibition of PCC migration and invasion. Moreover, quercetin induced PCC apoptosis through mitochondrial and death receptor pathways. In nude mouse models, PDA growth and metastasis were reduced by quercetin treatment. Mechanically, quercetin exerts its therapeutic effects on PDA by decreasing SHH activity. Interestingly, quercetin-induced SHH inactivation is mainly dependent on Gli2, but not Gli1. Enhance SHH activity by recombinant Shh protein abolished the quercetin-mediated inhibition of PCC proliferation, migration, and invasion. Furthermore, Shh activated TGF-ß1/Smad2/3 signaling and promoted EMT by inducing the expression of Zeb2 and Snail1 that eventually resulted in a partial reversal of quercetin-mediated inhibition of PCC migration and invasion. We conclude that quercetin inhibited the growth, migration, and invasion and induced apoptosis of PCCs by antagonizing SHH and TGF-ß/Smad signaling pathways. Thus, quercetin may be a potential candidate for PDA treatment.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Hedgehog/genética , Quercetina/farmacologia , Fator de Crescimento Transformador beta1/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Proteínas Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad3/genética , Proteína Gli2 com Dedos de Zinco/genética
12.
Am J Cancer Res ; 9(11): 2314-2330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815037

RESUMO

Zinc finger E-box binding homeobox 1 (ZEB1), as a typical transcription inhibitory factor of E-cadherin, plays a major role in stimulating the invasion and metastasis of tumors via modulating the epithelial-mesenchymal transition (EMT) signal. However, its function and modulatory mechanisms in endometrial carcinoma (EC) remain unclear. In this study, silencing ZEB1 significantly reduced EC cell migration, invasion, and metastasis, as well as enhanced the sensitivity of EC cells to cisplatin (cDDP) in vitro and in vivo. Mechanism analysis indicated that ZEB1 interacts with hepatoma-derived growth factor (HDGF) and co-localizes in the nucleus. In addition, ZEB1 as a transcription factor binds to the promoter of HDGF to stimulate HDGF transcription. Furthermore, suppression of HDGF in ZEB1-overexpressed EC cells not only reduced the expression of ß-catenin, TCF4, and ZEB1, but also repressed ß-catenin translocation from the cytoplasm into the nucleus and further downregulated the combination with TCF4. Interestingly, the ß-catenin/TCF4 signaling feedback stimulates ZEB1 transcription and therefore constitutes a positive feedback loop. In clinical samples, ZEB1 positively correlates with HDGF expression, and co-expression of ZEB1 and HDGF promotes the pathogenesis of EC. In summary, our study demonstrated that the positive feedback loop of ZEB1/HDGF/ß-catenin/TCF4 plays an unfavorable role in the metastasis of endometrial carcinoma.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31754475

RESUMO

In this study, we present novel molecular mechanisms by which FOXO1 functions as a tumor suppressor to prevent the pathogenesis of nasopharyngeal carcinoma (NPC). First, we observed that FOXO1 not only controlled tumor stemness and metastasis, but also sensitized NPC cells to cisplatin (DDP) in vitro and in vivo. Mechanistic studies demonstrated that FOXO1-induced miR-200b expression through the GSK3ß/ß-catenin/TCF4 network-mediated stimulation of ZEB1, which reduced tumor stemness and the epithelial-mesenchymal transition (EMT) signal. Furthermore, we observed FOXO1 interaction with MYH9 and suppression of MYH9 expression by modulating the PI3K/AKT/c-Myc/P53/miR-133a-3p pathway. Decreased MYH9 expression not only reduced its interactions with GSK3ß, but also attenuated TRAF6 expression, which then decreased the ubiquitin-mediated degradation of GSK3ß protein. Increased GSK3ß expression stimulated the ß-catenin/TCF4/ZEB1/miR-200b network, which increased the downstream tumor stemness and EMT signals. Subsequently, we observed that chemically synthesized cinobufotalin (CB) strongly increased FOXO1-induced DDP chemosensitivity by reducing MYH9 expression, and the reduction in MYH9 modulated GSK3ß/ß-catenin and its downstream tumor stemness and EMT signal in NPC. In clinical samples, the combination of low FOXO1 expression and high MYH9 expression indicated the worst overall survival rates. Our studies demonstrated that CB potently induced FOXO1-mediated DDP sensitivity by antagonizing its binding partner MYH9 to modulate tumor stemness in NPC.

14.
Cell Commun Signal ; 17(1): 145, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718671

RESUMO

BACKGROUND: Notch1 signalling is a stem-cell-related pathway that is essential for embryonic development, tissue regeneration and organogenesis. However, the role of Notch1 in the formation of myofibroblasts and fibrosis in kidneys following injury remains unknown. METHODS: The activity of Notch1 signalling was evaluated in fibrotic kidneys in CKD patients and in ureteral obstructive models in vivo and in cultured fibroblasts and TECs in vitro. In addition, the crosstalk of Notch1 with TGF-ß1/Smad2/3 signalling was also investigated. RESULTS: Notch1 activity was elevated in fibrotic kidneys of rat models and patients with chronic kidney disease (CKD). Further study revealed that epithelial and interstitial Notch1 activity correlated with an α-SMA-positive myofibroblastic phenotype. In vitro, injury stimulated epithelial Notch1 activation and epithelial-mesenchymal transition (EMT), resulting in matrix deposition in tubular epithelial cells (TECs). Additionally, interstitial Notch1 activation in association with fibroblast-myofibroblast differentiation (FMD) in fibroblasts mediated a myofibroblastic phenotype. These TGF-ß1/Smad2/3-dependent phenotypic transitions were abolished by Notch1 knockdown or a specific antagonist, DAPT, and were exacerbated by Notch1 overexpression or an activator Jagged-1-Fc chimaera protein. Interestingly, as a major driving force behind the EMT and FMD, TGF-ß1, also induced epithelial and interstitial Notch1 activity, indicating that TGF-ß1 may engage in crosstalk with Notch1 signalling to trigger fibrogenesis. CONCLUSION: These findings suggest that epithelial and interstitial Notch1 activation in kidneys following injury contributes to the myofibroblastic phenotype and fibrosis through the EMT in TECs and to the FMD in fibroblasts by targeting downstream TGF-ß1/Smad2/3 signalling.


Assuntos
Diaminas/farmacologia , Células Epiteliais/efeitos dos fármacos , Fibrose/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Receptor Notch1/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose/metabolismo , Fibrose/patologia , Humanos , Masculino , Miofibroblastos/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Br J Pharmacol ; 176(24): 4745-4759, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454852

RESUMO

BACKGROUND AND PURPOSE: Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. Previous studies have shown that resveratrol has anti-fibrotic activity, but its potential molecular mechanisms of action are not well understood. EXPERIMENTAL APPROACH: The anti-fibrotic effects of resveratrol were assayed in a rat model of unilateral ureteral obstruction (UUO) in vivo and in fibroblasts and tubular epithelial cells (TECs) stimulated by TGF-ß1 in vitro. Gene and protein expression levels were analysed by PCR, Western blotting, and immunohistochemical staining. KEY RESULTS: Resveratrol inhibits the myofibroblastic phenotype and fibrosis formation in UUO kidneys by targeting fibroblast-myofibroblast differentiation (FMD) and epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of resveratrol correlated with decreased proliferation of TECs in the interstitium and tubules, resulting in suppressed activity of the proliferation-related signalling pathways, including that of the MAPK, PI3K/Akt, Wnt/ß-catenin, and JAK2/STAT3 pathways. Resveratrol treatment suppressed TGF-ß1-induced FMD and the expression of the myofibroblastic phenotype in fibroblasts in vitro by antagonizing the activation of proliferation-related signalling. Similarly, TGF-ß1-mediated overactivation of the proliferation-related signalling in TECs induced EMT, and the myofibroblastic phenotype was suppressed by resveratrol. The anti-fibrotic and anti-proliferative effects of resveratrol were associated with the inactivation of Smad2/3 signalling and resulted in a partial reversal of FMD and EMT and the inhibition of the myofibroblastic phenotype. CONCLUSIONS AND IMPLICATIONS: Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in vivo and in vitro via proliferation-related pathways, making it a potential therapeutic agent for preventing renal fibrosis.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Rim , Miofibroblastos/efeitos dos fármacos , Resveratrol/farmacologia , Obstrução Ureteral/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Obstrução Ureteral/metabolismo
16.
Front Oncol ; 9: 211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032220

RESUMO

Background: Our previous work determined the correlation between high nuclear expression of hepatoma-derived growth factor (HDGF) and clinicopathological data of endometrial cancer (EC); however, the modulatory mechanisms and biological role of HDGF in EC have not been reported. Methods: Lentiviral particles carrying human HDGF short hairpin RNA (shHDGF-1, -2, and -3) vector and plasmids for HDGF, DDX5, and ß-catenin expression were, respectively introduced into EC cells to evaluate the effects and molecular mechanisms underlying EC cell proliferation, migration, invasion, and metastasis. Quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were used to determine HDGF and DDX5 expression. Co-immunoprecipitation (co-IP), mass spectrometry, and an immunofluorescence co-localization study were conducted to explore the relationship between HDGF, DDX5, and ß-catenin. Immunohistochemistry was used to analyze the clinical associations between HDGF and DDX5 in EC. Results: Knocking down HDGF expression significantly decreased EC cellular proliferation, migration, invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, HDGF overexpression reversed these effects. Stable knockdown-based HDGF suppression activated the PI3K/AKT signaling pathway, along with downstream ß-catenin-mediated cell cycle and epithelial-mesenchymal transition signaling. Furthermore, co-IP combined with mass spectrometry and an immunofluorescence co-localization study indicated that HDGF interacts with DDX5, whereas ß-catenin was associated with DDX5 but not HDGF. Overexpression of DDX5 reversed the suppression of shHDGF. Immunohistochemistry analysis showed that high expression of DDX5 constituted an unfavorable factor with respect to the clinicopathological characteristics of EC tissues and that HDGF and DDX5 high expression (HDGF+/DDX5+) led to a worse prognosis for patients with EC (P < 0.001). In addition, we found that the expression of HDGF and DDX5 was positively correlated in EC tissues (r = 0.475, P < 0.001). Conclusion: Our results provide novel evidence that HDGF interacts with DDX5 and promotes the progression of EC through the induction of ß-catenin.

17.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(4): 471-476, 2018 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-29735450

RESUMO

OBJECTIVE: To investigate the expression of phosphoglycerate kinase 1 (PGK1) and its prognostic value in endometrial carcinoma (EC). METHODS: The expression of PGK1 was detected immunohistochemically in 30 normal endometrium and 130 EC specimens. The relationship between PGK1 protein expression and the clinicopathological features of the patients was evaluated. RESULTS: Immunohistochemical analysis revealed low PGK1 expression in 55.4% (72/130) and high PGK1 expression in 44.6% (58/130) of the EC specimens, as compared with the rates of 90% (27/30) and 10% (3/30) in normal endometrium, respectively (P<0.001). PGK1 expression was significantly correlated with FIGO stage (P<0.001), histological grade (P=0.002) and lymph node metastasis (P<0.001). Kaplan-Meier survival analysis indicated that patients with a high PGK1 expression had a shorter overall survival rate than those with a low PGK1 expression (P<0.001). Multivariate analysis showed that a high PGK1 expression was not the independent predictor of the prognosis of EC (P=0.077). CONCLUSION: A high expression of PGK1 is associated with aggressive and metastatic behaviors of EC, and detection of PGK1 provides assistance in evaluating the prognosis of patients with EC.


Assuntos
Neoplasias do Endométrio/metabolismo , Fosfoglicerato Quinase/metabolismo , Neoplasias do Endométrio/diagnóstico , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Estadiamento de Neoplasias , Prognóstico
18.
Oncotarget ; 9(1): 680-690, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416645

RESUMO

The aim of this study was to measure the expression patterns of PGK1 and GRP78 in normal endometrial tissues and endometrial carcinoma, and associations between their combined effects and the pathological features of endometrial carcinoma. We used 30 normal endometrial tissue samples and 130 endometrial carcinoma samples, and separately evaluated PGK1 and GRP78 protein expression by immunohistochemistry. Scores ranging from 0 to 9 were obtained by multiplying the percentage of positive cells by the staining intensity (0-3). Immunohistochemical analysis revealed increased PGK1 and GRP78 expression in the cytoplasm of endometrial carcinoma cells compared with that in normal endometrial tissues. High PGK1 expression positively correlated with the FIGO stage (P < 0.001), histological grade (P = 0.002), and lymph node status (P < 0.001). High GRP78 expression positively correlated with the pathological type (P = 0.0125), FIGO stage (P < 0.001), and lymph node status (P < 0.001). In addition, PGK1 overexpression was positively correlated with GRP78 overexpression in endometrial carcinoma patients (P < 0.001), and the concurrent expression of both oncogenes in endometrial carcinoma patients correlated significantly with the lymph node status (P < 0.001) and FIGO stage (P < 0.001). Patients with high PGK1 and GRP78 expression levels had poorer overall survival rates than those with low expression levels of both proteins (P < 0.001). Our results suggested that the co-occurrence of PGK1 and GRP78 expression is potentially an unfavorable factor for endometrial carcinoma progression.

19.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(2): 157-164, 2016 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-28219857

RESUMO

OBJECTIVE: To analyze the expression of MAP2K4 and vimentin in human endometrial carcinoma (EC) and their association with the clinicopathological features and prognosis of the patients. METHODS: MAP2K4 and vimentin expressions were detected immunohistochemically in paraffin-embedded tissue sections from 128 patients with EC, and the correlation of MAP2K4 and vimentin expressions with the clinicopathological factors of the patients was analyzed. RESULTS: MAP2K4 and vimentin proteins were positively expressed in 49 (38.3%) and 83 (64.8%) of the patients, respectively. A positive expression of MAP2K4 was negatively correlated with FIGO stage of the tumor (P=0.010) and lymph node status (P=0.016); a positive expression of vimentin was positively correlated with FIGO stage of the tumor (P=0.025), histological grades (P=0.017), depth of myometrial invasion (P=0.044) and lymph node status (P=0.032). MAP2K4 was inversely associated with vimentin expression in EC(r=-0.598, P<0.001). Patients positive for MAP2K4 tended to have a higher overall survival rate (P=0.002), and those positive for vimentin tended to have a lower overall survival rate (P=0.007); patients positive for MAP2K4 but negative for vimentin had the longest survival time, while those negative for MAP2K4 and positive for vimentin had lowest survival rate (P=0.004). CONCLUSION: Detection of MAP2K4 and vimentin might help in early diagnosis and prognostic evaluation of patients with EC.


Assuntos
Neoplasias do Endométrio/metabolismo , MAP Quinase Quinase 4/metabolismo , Vimentina/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Humanos , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA