Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612469

RESUMO

Dietary methionine restriction (MetR) offers an integrated set of beneficial health effects, including delaying aging, extending health span, preventing fat accumulation, and reducing oxidative stress. This study aimed to investigate whether MetR exerts entero-protective effects by modulating intestinal flora, and the effect of MetR on plasma metabolites in rats. Rats were fed diets containing 0.86% methionine (CON group) and 0.17% methionine (MetR group) for 6 weeks. Several indicators of inflammation, gut microbiota, plasma metabolites, and intestinal barrier function were measured. 16S rRNA gene sequencing was used to analyze the cecal microbiota. The MetR diet reduced the plasma and colonic inflammatory factor levels. The MetR diet significantly improved intestinal barrier function by increasing the mRNA expression of tight junction proteins, such as zonula occludens (ZO)-1, claudin-3, and claudin-5. In addition, MetR significantly increased the levels of short-chain fatty acids (SCFAs) by increasing the abundance of SCFAs-producing Erysipclotxichaceae and Clostridium_sensu_stricto_1 and decreasing the abundance of pro-inflammatory bacteria Proteobacteria and Escherichia-Shigella. Furthermore, MetR reduced the plasma levels of taurochenodeoxycholate-7-sulfate, taurocholic acid, and tauro-ursodeoxycholic acid. Correlation analysis identified that colonic acetate, total colonic SCFAs, 8-acetylegelolide, collettiside I, 6-methyladenine, and cholic acid glucuronide showed a significant positive correlation with Clostridium_sensu_stricto_1 abundance but a significant negative correlation with Escherichia-Shigella and Enterococcus abundance. MetR improved gut health and altered the plasma metabolic profile by regulating the gut microbiota in rats.


Assuntos
Microbioma Gastrointestinal , Metionina , Animais , Ratos , RNA Ribossômico 16S/genética , Racemetionina , Metabolômica
2.
J Poult Sci ; 60(2): 2023018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37489144

RESUMO

This study investigated the effects of dietary supplementation with Gracilaria lemaneiformis polysaccharides (GLPs) on the growth performance, antioxidant capacity, immune function, and meat quality of broiler chickens. A total of 320 one-day-old Arbor Acres broiler chicks were individually weighed and randomly assigned to four groups of eight replicate cages (10 broilers per cage). Birds were fed a basal diet supplemented with 0 (control), 1,000, 2,000, or 4,000 mg/kg GLPs. Compared to that of the control group, dietary supplementation with 2,000 mg/kg GLPs linearly increased the average daily weight gain during days 0-42 (P < 0.05) and linearly decreased the feed to gain ratio during days 1-21 and 22-42 (P < 0.05). Broilers fed GLP-supplemented diets showed linear (P < 0.05) and quadratic (P < 0.05) increases in serum superoxide dismutase (P < 0.05), glutathione peroxidase, and catalase activities in the liver, whereas GLP supplementation decreased serum and liver malondialdehyde concentrations (P < 0.05). A linear increase in serum catalase activity was observed following supplementation with 2,000 or 4,000 mg/kg GLPs (P < 0.05). Broilers fed GLP-supplemented diets showed linear (P < 0.05) and quadratic (P < 0.05) increases in serum immunoglobulin (Ig) A, IgG, interleukin (IL)-6, IL-1ß, IL-10, and interferon-γ concentrations (P < 0.05), and a trend towards linear improvement in IL-4 levels (P = 0.089). Dietary GLP supplementation increased the Lactobacillus spp. population compared to that of the control group (P < 0.05) and 2,000 and 4,000 mg/kg of GLPs nearly decreased the population of E. coli in the cecum (P = 0.056). Therefore, dietary GLP supplementation may improve broiler growth performance by altering antioxidant capacity, immune function, and the gut microbiota composition. Considering the effects of different doses of GLP on the above parameters, 2,000 mg/kg of GLPs was identified as the best dose.

3.
J Anim Sci ; 100(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074562

RESUMO

This study was conducted to investigate the effects of dietary supplementation with ellagic acid (EA) on the performance, immune function, antioxidant activity, digestive enzyme activities, and intestinal functions in yellow-feathered broilers. In total, 288 healthy yellow-feathered broilers with an average body weight of 39 ± 0.24 g were randomly divided into four treatment groups. Broilers were given a corn-soybean meal basal diet supplemented with 0 (control group), 100, 200, or 400 mg/kg EA. In the finisher period and the overall period, the inclusion of 100, 200, and 400 mg/kg EA increased the average daily gain (P < 0.05), and the inclusion of 200 or 400 mg/kg EA decreased the feed/gain ratio compared with the control group (P < 0.05). The best immune activity (immunoglobulin G [IgG] and immunoglobulin M [IgM] concentrations) in serum was shown in the 200 mg/kg EA group (P < 0.05). Broilers fed with 200 or 400 mg/kg EA-containing diets exhibited higher serum catalase and glutathione peroxidase activities (P < 0.05) than control broilers. The inclusion of 200 mg/kg EA in the broiler diets increased intestinal chymotrypsin, pepsin, and lipase activities (P < 0.05). Broilers fed 200 mg/kg EA-containing diets had higher villus height in the jejunum and ileum, a higher ratio between villus height and crypt depth in the jejunum, and a deeper crypt in the duodenum compared to control broilers (P < 0.05). EA reduced the diamine oxidase activity and D-lactate concentration in serum. Furthermore, in birds fed EA-containing diets, the abundance of Rikenella and norank_f_norank_o_Clostridia_UCG-014 in cecum were decreased compared with control birds (P < 0.05). Moreover, in birds fed EA-containing diets, the levels of acetate, butyrate, and total short-chain fatty acids in the cecum were higher (P < 0.05) than those in control birds. These findings indicated that dietary EA had ameliorative effects on antioxidant capability, digestive enzyme activity, immune function, and intestinal functions, which led to strengthened growth performance.


Broilers are susceptible to physiological stress under the environment of faster growth that may cause growth retardation, and this problem has inspired the research in alternative managements and dietary strategies to control the incidence and severity. Due to the consumer preference for natural products, the application of polyphenol compound has been increasing in appeal. Our study was conducted to determine if ellagic acid (EA, a natural four-ring polyphenol compound) added in the diet of broilers during the 1st day to 56th day may contribute to supporting growth performance, immune response, antioxidant activity, digestive enzyme activities, and intestinal functions in yellow-feathered broilers. Broilers were given a corn-soybean meal basal diet supplemented with 0, 100, 200, or 400 mg/kg EA. Our results indicated that supplementation with 200 or 400 mg/kg EA could improve anti-oxidant status, immune response, and digestive enzyme activities, which ultimately enhance growth performance. The beneficial effects for hosts associated with EA were not only due to the protective effects on the overall health and the digestion and absorption capacity, but also due to the enhanced gut health by suppressing the pathogenic bacteria via stimulating the secretion of intestinal short chain fatty acid and maintaining the integrity of intestinal barrier by decreasing intestinal permeability, which finally led to the improved health status of yellow-feathered broilers. This study demonstrated that EA has a certain protective effect on yellow-feathered broilers.


Assuntos
Antioxidantes , Galinhas , Animais , Galinhas/fisiologia , Ração Animal/análise , Ácido Elágico/farmacologia , Suplementos Nutricionais , Dieta/veterinária , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA