Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998320

RESUMO

Buried pipelines are widely used, so it is necessary to analyze and study their fracture characteristics. The locations of corrosion defects on the pipe are more susceptible to fracture under the influence of internal pressure generated during material transportation. In the open literature, a large number of studies have been conducted on the failure pressure or residual strength of corroded pipelines. On this basis, this study conducts a fracture analysis on buried pipelines with corrosion areas under seismic loads. The extended finite element method was used to model and analyze the buried pipeline under seismic load, and it was found that the stress value at the crack tip was maximum when the circumferential angle of the crack was near 5° in the corrosion area. The changes in the stress field at the crack tip in the corrosion zone of the pipeline under different loads were compared. Based on the BP algorithm, a neural network model that can predict the stress field at the pipe crack tip is established. The neural network is trained using numerical model data, and a prediction model with a prediction error of less than 10% is constructed. The crack tip characteristics were further studied using the BP neural network model, and it was determined that the tip stress fluctuation range is between 450 MPa and 500 MPa. The neural network model is optimized based on the GA algorithm, which solves the problem of convergence difficulties and improves the prediction accuracy. According to the prediction results, it is found that when the internal pressure increases, the corrosion depth will significantly affect the crack tip stress field. The maximum error of the optimized neural network is 5.32%. The calculation data of the optimized neural network model were compared with the calculation data of other models, and it was determined that GA-BPNN has better adaptability in this research problem.

2.
Materials (Basel) ; 17(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930206

RESUMO

Metallic joints within tokamak devices necessitate high interface hardness and superior bonding properties. However, conventional manufacturing techniques, specifically the hot isostatic pressing (HIP) diffusion joining process, encounter challenges, including the degradation of the SS316L/CuCrZr interface and CuCrZr hardness. To address this, we explore the potential of laser powder bed fusion (LPBF) technology. To assess its viability, we fabricated 54 SS316L/CuCrZr samples and systematically investigated the impact of varied process parameters on the microhardness and tensile strength of the dissimilar metal interfaces. Through comprehensive analysis, integrating scanning electron microscopy (SEM) imagery, we elucidated the mechanisms underlying mechanical property alterations. Notably, within a laser volumetric energy density range of 60 J/mm3 to 90 J/mm3, we achieved elevated interface hardness (around 150 HV) and commendable bonding quality. Comparative analysis against traditional methods revealed a substantial enhancement of 30% to 40% in interface hardness with additive manufacturing, effectively mitigating CuCrZr hardness degradation.

3.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930281

RESUMO

The manufacture of damping alloy parts with stable damping properties and high mechanical performances in the selective laser melting (SLM) process is influenced by temperature evolution and residual stress distribution. Choosing an appropriate scanning strategy, namely the specific trajectory along which the laser head scans powders within given area, is crucial, but clearly defined criteria for scanning strategy design are lacking. In this study, a three-dimensional finite element model (FEM) of the SLM process for manufacturing a WE43 alloy component was established and validated against the published experimental data. Eleven different scanning strategies were designed and simulated, considering variables such as scanning track length, direction, Out-In or In-Out strategy, start point, and interlayer variation. The results showed that scanning strategy, geometry, and layer number collectively affect temperature, melt pool, and stress outputs. For instance, starting scanning at a colder part of the powder layer could lead to a high peak temperature and low melt pool depth. A higher layer number generally results in lower cooling rate, a lower temperature gradient, a longer melt pool life, and larger melt pool dimensions. Changing the start point between scanning circulations helps mitigate detrimental residual stress. This work highlights the potential of analyzing various scanning strategy-related variables, which contributes to reducing trial-and-error tests and selecting optimal scanning strategies under different product quality requirements. This article can assist in the design of appropriate scanning strategies to prevent defects such as element loss due to evaporation, poor bonding, and deformation or cracking from high residual stress. Additionally, identifying stress concentration locations and understanding the effects of geometry and layer number on thermal and mechanical behaviors can assist in geometry design.

4.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930410

RESUMO

The application of carbon fiber-reinforced composite materials in marine engineering is growing steadily. The mechanical properties of unbonded flexible risers using composite tensile armor wire are highly valued. However, the curing process generates a certain amount of internal residual stress. We present a detailed analysis of epoxy resin laminates to assess the impact of thermal, chemical, and mechanical effects on the curing stress and strain. An empirical model that correlates temperature and degree of cure was developed to precisely fit the elastic modulus data of the curing resin. The chemical kinetics of the epoxy resin system was characterized using differential scanning calorimetry (DSC), while the tensile relaxation modulus was determined through a dynamic mechanical analysis. The viscoelastic model was calibrated using the elastic modulus data of the cured resin combining temperature and degree of the curing (thermochemical kinetics) responses. Based on the principle of time-temperature superposition, the displacement factor and relaxation behavior of the material were also accurately captured by employing the same principle of time-temperature superposition. Utilizing the empirical model for degree of cure and modulus, we predicted micro-curing-induced strains in cured composite materials, which were then validated with experimental observations.

5.
Micromachines (Basel) ; 15(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930735

RESUMO

In this study, CoCrMo cuboid samples were deposited on a CuZrCr substrate using laser powder bed fusion (L-PBF) technology to investigate the influence of process parameters and laser remelting strategies on the mechanical properties and interface characteristics of multi-metals. This study found that process parameters and laser scanning strategies had a significant influence on the mechanical properties and interface characteristics. Samples fabricated with an EV ≤ 20 J/mm3 showed little tensile ductility. As the volumetric energy density (EV) increased to a range between 40 J/mm3 and 100 J/mm3, the samples achieved the desired mechanical properties, with a strong interface combining the alloys. However, an excessive energy density could result in cracks due to thermal stress. Laser remelting significantly improved the interface properties, especially when the EV was below 40 J/mm3. Variances in the EV showed little influence on the hardness at the CuZrCr end, while the hardness at the interface and the CoCrMo end showed an increasing and decreasing trend with an increase in the EV, respectively. Interface characterization showed that when the EV was greater than 43 J/mm3, the main defects in the L-PBF CoCrMo samples were thermal cracks, which gradually changed to pores with a lack of fusion when the EV decreased. This study provides theoretical and technical support for the manufacturing of multi-metal parts using L-PBF technology.

6.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931587

RESUMO

Track irregularities directly affect the quality and safety of railway vehicle operations. Quantitative detection and real-time monitoring of track irregularities are of great importance. However, due to the frequent variable vehicle speed, vehicle operation is a typical non-stationary process. The traditional signal analysis methods are unsuitable for non-stationary processes, making the quantitative detection of the wavelength and amplitude of track irregularities difficult. To solve the above problems, this paper proposes a quantitative detection method of track irregularities under non-stationary conditions with variable vehicle speed by order tracking analysis for the first time. Firstly, a simplified wheel-rail dynamic model is established to derive the quantitative relationship between the axle-box vertical vibration and the track vertical irregularities. Secondly, the Simpson double integration method is proposed to calculate the axle-box vertical displacement based on the axle-box vertical acceleration, and the process error is optimized. Thirdly, based on the order tracking analysis theory, the angular domain resampling is performed on the axle-box vertical displacement time-domain signal in combination with the wheel rotation speed signals, and the quantitative detection of the track irregularities is achieved. Finally, the proposed method is validated based on simulation and field test analysis cases. We provide theoretical support and method reference for the quantitative detection method of track irregularities.

7.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612038

RESUMO

To enhance the surface quality of metal 3D-printed components, magnetic abrasive finishing (MAF) technology was employed for post-processing polishing. Experimental investigation employing response surface methodology was conducted to explore the impact of processing gap, rotational speed of the magnetic field, auxiliary vibration, and magnetic abrasive particle (MAP) size on the quality enhancement of internal surfaces. A regression model correlating roughness with crucial process parameters was established, followed by parameter optimization. Ultimately, the internal surface finishing of waveguides with blind cavities was achieved, and the finishing quality was comprehensively evaluated. Results indicate that under optimal process conditions, the roughness of the specimens decreased from Ra 2.5 µm to Ra 0.65 µm, reflecting a reduction rate of 74%. Following sequential rough and fine processing, the roughnesses of the cavity bottom, side wall, and convex surface inside the waveguide reduced to 0.59 µm, 0.61 µm, and 1.9 µm, respectively, from the original Ra above 12 µm. The findings of this study provide valuable technical insights into the surface finishing of metal 3D-printed components.

8.
Adv Mater ; : e2312263, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439193

RESUMO

4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.

9.
Micromachines (Basel) ; 15(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276861

RESUMO

The nuclear and petrochemical industries often require multi-metal parts that are corrosion-resistant, heat-resistant, and possess high strength to enhance equipment safety and reduce downtime. Additive manufacturing technology enables the rapid and flexible processing of multi-metal parts to meet these stringent demands. This study is aimed at investigating the interface hardness between CoCrMo/IN625 to determine optimal processing parameters that can be utilized in manufacturing reliable and durable multi-metal parts. The result indicates that when the volumetric energy density, Ev, is at or below 20 J/mm3, microfluidic forces are unable to sufficiently diffuse between the two metals, leading to insufficient diffusion, and the high hardness CoCrMo acts as a support, resulting in a significantly higher interface hardness. As Ev increases, intense recoil pressure within the microfluidic forces disrupts the melt pool, allowing for full diffusion between the two metals. The fully diffused high-hardness CoCrMo has been diluted by the low-hardness IN625, thus reducing the interface hardness. Considering the interface hardness, strength, and printing efficiency (time and energy consumption), we recommend a range of 35 J/mm3 < Ev ≤ 75 J/mm3. In this range, the average values for interface hardness and tensile strength of the samples are approximately 382 HV and 903 MPa, respectively.

10.
Materials (Basel) ; 16(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834595

RESUMO

A few components used in the aerospace and petrochemical industries serve in corrosive environments at high temperatures. Corrosion-resistant metals or unique processes, such as coating and fusion welding, are required to improve the performance of the parts. We have used laser powder bed fusion (LPBF) technology to deposit a 5 mm thick corrosion-resistant CoCrMo layer on a high-strength IN625 substrate to improve the corrosion resistance of the core parts of a valve. This study found that when the laser volumetric energy density (EV) ≤ 20, the tensile strength increases linearly with the increase in EV, and the slope of the curve is approximately 85°. The larger the slope, the greater the impact of EV on the intensity. When EV > 20, the sample strength reaches the maximum tensile strength. When the EV increases from 0 to 20, the fracture position of the sample shifts from CoCrMo to IN625. When EV ≤ 38, the strain increases linearly with the increase in EV, and the slope of the curve is approximately 67.5°. The sample strain rate reaches the maximum when EV > 38. Therefore, for an optimal sample strength and strain, EV should be greater than 38. This study provides theoretical and technical support for the manufacturing of corrosion-resistant dissimilar metal parts using LPBF technology.

11.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374471

RESUMO

This article discusses the different forms of powder bed fusion (PBF) techniques, namely laser powder bed fusion (LPBF), electron beam powder bed fusion (EB-PBF) and large-area pulsed laser powder bed fusion (L-APBF). The challenges faced in multimetal additive manufacturing, including material compatibility, porosity, cracks, loss of alloying elements and oxide inclusions, have been extensively discussed. Solutions proposed to overcome these challenges include the optimization of printing parameters, the use of support structures, and post-processing techniques. Future research on metal composites, functionally graded materials, multi-alloy structures and materials with tailored properties are needed to address these challenges and improve the quality and reliability of the final product. The advancement of multimetal additive manufacturing can offer significant benefits for various industries.

12.
Materials (Basel) ; 16(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176211

RESUMO

Based on the numerical simulation method of the virtual crack closure technique (VCCT), an interference model was established to investigate the physical problem of two interacting cracks of different sizes in the welding zone of oil and gas pipelines. The obtained results of the current interference problem were compared with those of single crack case. Various crack configurations, such as different crack spacing and different crack sizes, were analyzed. The characteristic quantity fluid pressure load P during the crack propagation process, the peak value of the von Mises stress distribution field of the crack growth path, as well as the difference ∆Bx between the peak value of the magnetic induction intensity component at the crack and the value of the magnetic induction intensity component at its symmetrical position were calculated. The crack interaction scale factors, including γP, γMises, and γΔBx, were compared and analyzed. The numerical modeling results show that when the unequal-length double cracks interfere with each other, the cracks are more likely to propagate toward each other. The tendency of the double-cracks to propagate toward each other gradually weakens as the distance between the crack tips increases and is finally the same as that of single-crack cases. It was also found that the effect of large-sized cracks on small-sized cracks is greater than that of small-sized ones on large-sized ones. The numerical modeling results could be applied for the prediction and analysis of multicrack damage in oil and gas pipeline welds.

13.
Materials (Basel) ; 16(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37109987

RESUMO

Hip replacement femoral implants are made of substantial materials that all have stiffness considerably higher than that of bone, which can cause significant bone resorption secondary to stress shielding and lead to severe complications. The topology optimization design method based on the uniform distribution of material micro-structure density can form a continuous mechanical transmission route, which can better solve the problem of reducing the stress shielding effect. A multi-scale parallel topology optimization method is proposed in this paper and a topological structure of type B femoral stem is derived. Using the traditional topology optimization method (Solid Isotropic Material with Penalization, SIMP), a topological structure of type A femoral stem is also derived. The sensitivity of the two kinds of femoral stems to the change of load direction is compared with the variation amplitude of the structural flexibility of the femoral stem. Furthermore, the finite element method is used to analyze the stress of type A and type B femoral stem under multiple conditions. Simulation and experimental results show that the average stress of type A and type B femoral stem on the femur are 14.80 MPa, 23.55 MPa, 16.94 MPa and 10.89 MPa, 20.92 MPa, 16.50 MPa, respectively. For type B femoral stem, the average error of strain is -1682µÎµ and the average relative error is 20.3% at the test points on the medial side and the mean error of strain is 1281µÎµ and the mean relative error is 19.5% at the test points on the outside.

14.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499889

RESUMO

The discharge of industrial liquid waste continues to cause more and more environmental problems. The current research aims at developing a durable and highly efficient filter screen for oil-water separation. In this paper, hydrophobic nano-SiO2 and phenolic resin were used as raw materials. Hydrophobic SiO2 particles were fixed on the surface of the coated filter screen by heating and curing the anchored particles. The surface morphology, element composition, surface roughness and water contact angle of the prepared super hydrophobic SiO2/phenolic resin-coated filter screen were analyzed and discussed by using SEM, EDS, AFM, OCA and other instruments. The results showed that the prepared filter screen contained Si, O, C elements, which proved that the resin coating film had adhered to the filter screen surface. When the aperture of the phenolic resin-coated filter screen was 400 meshes, the drainage angle reached a maximum value of 153.8° ± 0.8°. When two layers of hydrophobic SiO2 phenolic resin were coated on the screen, the surface of the filter screen had a sufficient nano-porous structure and high roughness. The tests showed that the minimum water contact angle of the filter screen exceeded 150°, which indicated excellent chemical resistance. Through the analysis of oil-water separation efficiency of isooctane, gasoline, n-hexane, dodecane, edible oil, dichloromethane and trichloromethane, it was concluded that the lowest separation efficiency for edible oil was 97.2%, and the highest separation efficiency for n-hexane was 99.4%. After 50 cycles of separation, the oil-water separation efficiency for n-hexane was still at 99%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA