Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32367-32374, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861392

RESUMO

Dielectric ceramic capacitors are prospective energy-storage devices for pulsed-power systems owing to their ultrafast charge-discharge speed. However, low energy-storage density makes them difficult to commercialize for high-pulse-power technology applications. Herein, we presented a structurally regulated design strategy to disrupt a long-range ferroelectric order, refined grains, and eventually achieve excellent comprehensive energy-storage performance in (1 - x) (0.7Bi0.5Na0.5TiO3-0.3SrTiO3)-x Sm(Zn2/3Nb1/3)O3 eco-friendly ceramics. A large Wrec of ∼7.43 ± 0.05 J/cm3 and a high η of ∼85 ± 0.5% of 0.96 (0.7Bi0.5Na0.5TiO3-0.3SrTiO3)-0.04 Sm(Zn2/3Nb1/3)O3 were obtained at a low electric field of 290 kV cm-1 with good energy-storage temperature (25-120 °C), frequency (1-100 Hz) stability, and charge-discharge properties (PD ∼ 74 ± 1 MW/cm3 and τ0.9 ∼ 159 ± 2 ns). This strategy inspires rational structurally regulated designs and aims to promote the development of eco-friendly 0.7Bi0.5Na0.5TiO3-based ceramics with excellent energy-storage characteristics.

2.
Small ; : e2309796, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813728

RESUMO

The high-field energy-storage performance of dielectric capacitors has been significantly improved in recent years, yet the high voltage risks of device failure and large cost of insulation technology increase the demand for high-performance dielectric capacitors at finite electric fields. Herein, a unique superparaelectric state filled with polar nanoclusters with various local symmetries for lead-free relaxor ferroelectric capacitors is subtly designed through a simple chemical modification method, successfully realizing a collaborative improvement of polarization hysteresis, maximum polarization, and polarization saturation at moderate electric fields of 20-30 kV mm-1. Therefore, a giant recoverable energy density of ≈5.0 J cm-3 and a high efficiency of ≈82.1% are simultaneously achieved at 30 kV mm-1 in (0.9-x)NaNbO3-0.1BaTiO3-xBiFeO3 lead-free ceramics, showing a breakthrough progress in moderate-field comprehensive energy-storage performances. Moreover, superior charge-discharge performances of high-power density ≈182 MW cm-3, high discharge energy density ≈4.3 J cm-3 and ultra-short discharge time <70 ns as well as excellent temperature stability demonstrate great application potentials for dielectric energy-storage capacitors in pulsed power devices. This work provides an effective and paradigmatic strategy for developing novel lead-free dielectrics with high energy-storage performance under finite electric fields.

3.
ACS Appl Mater Interfaces ; 15(18): 22301-22309, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126568

RESUMO

NaNbO3-based relaxor antiferroelectric (AFE) ceramics are receiving more and more attention for high power pulse applications. A commonly used design strategy is to add complex perovskites with lower tolerance factors. Herein, a new lead-free AFE system of (0.85 - x)NaNbO3-xNaSbO3-0.15(Na0.5La0.5)TiO3 was specially designed considering the substitution of Sb5+ for Nb5+ reduces the polarizability of B-site ions but increases the tolerance factor. The formation of nanodomains with stable AFE orthorhombic R phase symmetry contributes to a slim and double-like polarization-field hysteresis loop, while the increased resistivity and activation energy as a result of sintering aids lead to an enhanced breakdown strength. Therefore, an excellent energy density Wrec ≈ 6.05 J/cm3, a high energy efficiency η ≈ 80.5%, and good charge-discharge performances (power density PD ≈ 155 MW/cm3 and discharging rate t0.9 ≈ 44.6 ns) were achieved in MnO2-doped x = 0.03 ceramics. The experimental results demonstrate that the B-site Sb5+ driven orthorhombic P-R phase transition and increased local structure disorder should provide a new strategy to design high-performance NaNbO3-based relaxor AFE capacitors.

4.
ACS Appl Mater Interfaces ; 14(35): 40043-40051, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36006029

RESUMO

Pratical applications have put forward great challenges to the comprehensive energy-storage performance of ceramic material. Here, a novel route of simultaneously manipulating multiscale structure and the field-induced structural transformation in (Bi0.5Na0.5)TiO3-based ceramics is proposed to address the above concern. The multiscale structure of 0.88(Bi0.5Na0.5)TiO3-0.12BaTiO3 solid solutions such as grain and domain size, band gap, and phase structure can be adjusted by adding antiferroelectric NaNbO3. Simultaneously, a field-induced P4bm relaxor antiferroelectric to P4mm ferroelectric phase transformation can be obtained by constructing a P4mm-P4bm phase boundary, which is expected to require a lower energy barrier compared with the field-induced P4bm relaxor antiferroelectric to R3c ferroelectric transformation in other (Bi0.5Na0.5)TiO3-based ceramics. The optimized field-induced structural transformation behavior and the formation of nanodomains enables a minimized polarization hysteresis but an enhanced maximum polarization. Moreover, the decreased grain size together with increased band gap leads to a significantly improved breakdown strength. Accordingly, a giant energy density Wrec ∼ 8.0 J/cm3, a high efficiency η ∼ 86%, a short discharging time t0.9 ∼ 41 ns, and a good temperature stability (Wrec = 1.32 ± 0.12 J/cm3, η = 88.5% ± 2.5% @ 25-200 °C) are simultaneously obtained in 0.63(Bi0.5Na0.5)TiO3-0.12BaTiO3-0.25NaNbO3 relaxor antiferroelectric ceramics, demonstrating large potentials for the ceramic capacitor applications.

5.
Adv Mater ; 34(34): e2204356, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35766453

RESUMO

Supercritical relaxor nanograined ferroelectrics are demonstrated for high-performance dielectric capacitors, showing record-high overall properties of energy density ≈13.1 J cm-3 and field-insensitive efficiency ≈90% at ≈74 kV mm-1 and superior charge-discharge performances of high power density ≈700 MW cm-3 , high discharge energy density ≈6.67 J cm-3 , and ultrashort discharge time <40 ns at 55 kV mm-1 . Ex/in situ transmission electron microscopy, Raman spectroscopy, and synchrotron X-ray diffraction provide clear evidence of the supercritical behavior in (Na,K)(Sb,Nb)O3 -SrZrO3 -(Bi0.5 Na0.5 )ZrO3 ceramics, being achieved by engineering the coexistence of multiple local symmetries within the ergodic relaxor zone. The vanished difference between the ground relaxor state and the high-field supercritical state eliminates polarization hysteresis. The supercritical evolution with electric field enables a highly delayed polarization saturation with continuously increased polarization magnitudes. The results demonstrate that such a design strategy of compositionally induced and field-manipulated supercritical behavior can be generalizable for developing desirable energy-storage dielectrics for applications in ceramic/film capacitors.

6.
ACS Appl Mater Interfaces ; 14(19): 22263-22269, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35502874

RESUMO

Dielectric ceramics with outstanding energy-storage performances are nowadays in great demand for pulsed power electronic systems. Here, we propose a synergistic design strategy to significantly enhance the energy-storage properties of (1 - x)(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-xCaTi0.75Ta0.2O3 solid solution ceramics through introducing polar nanoregions, shifting rhombohedral to tetragonal phase transition below room temperature (stable antiferroelectric characteristic), as well as increasing the band gap in the system. Ultrahigh energy-storage properties with a record value of recoverable energy-storage density Wrec ∼ 9.55 J/cm3 and a high efficiency η ∼ 88% are achieved in Na0.5Bi0.5TiO3-based bulk ceramics with x = 0.24. Moreover, high Wrec (>3.4 J/cm3) and η (>90%) with a variation of less than 6% can be observed in a wide frequency and temperature frequency range of 5-200 Hz and 25-140 °C. Our research result not only indicates the great possibility of Na0.5Bi0.5TiO3-based lead-free compositions to replace lead-based energy-storage ceramics but also gives an effective strategy to design ultrahigh energy-storage performances for eco-friendly ceramics.

7.
ACS Appl Mater Interfaces ; 12(17): 19467-19475, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32250098

RESUMO

Antiferroelectric (AFE) materials exhibit outstanding advantages against linear or ferroelectric (FE) dielectrics in high-performance energy-storage capacitors. However, their energy-storage performances are usually restricted by both extremely large hysteresis and insufficiently high driving field of the AFE-FE phase transition, which has been a longstanding issue to be overcome in the community. In this work, we report a two-step sintered 0.83NaNbO3-0.17SrTiO3 (NN-ST) lead-free relaxor AFE R-phase ceramic with high relative density of ≥95% and large spans of average grain sizes from 1.2 to 8.2 µm, strikingly achieving a giant amplification of recoverable energy-storage density (Wrec) by 176%. Analyses of permittivity-temperature curves, Raman spectrum and microstructure demonstrate that remarkably enhanced Wrec values should be ascribed to the dual adjustment of local heterogeneity (nanoscale) and grain scale (microscale), resulting in the enhanced threshold field strength for dielectric breakdown and the increased critical electric fields for the AFE-FE phase transition. A high Wrec ≈ 1.60 J/cm3, a fast discharging rate t0.9 ≈ 520 ns, large current density ∼788 A/cm2, and large power density ∼55 MW/cm3 are achieved at room temperature in the NN-ST ceramic sample with an average grain size of ∼1.2 µm. These results suggest that the multiscale structure regulation should be an efficient way for achieving enhanced energy-storage properties in NN-ST relaxor AFE ceramics through a two-step sintering technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA