Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Microbiol ; 15: 1376141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699478

RESUMO

Objective: This study aimed to evaluate the prevalence of human papillomavirus (HPV) infection and presence of licensed HPV vaccine genotypes among patients with genital warts in Foshan, China from 2015 to 2022, to provide useful references for the detection, prevention and control of genital warts in Foshan. Methods: The present study retrospectively analyzed the HPV detection rates in patients with genital warts. A total of 1,625 patients were seen at the Second People's Hospital of Foshan, Guangdong Province, China, from 2015 to 2022. Samples were collected from various lesions and genotyped for 21 genotypes of HPV by infusion hybridization. The classification principle of HPV genotypes in this study: (1) Based on the relationship between HPV and carcinogenicity; (2) Based on the number of HPV genotypes infected; (3) Based on the HPV genotypes of licensed HPV vaccines. Results: The detection rate of any HPV in patients with genital warts was 80.37% (1,306/1,625). The detection rates of HPV for low-risk infection, co-infection and high-risk infection were 49.48% (804/1,625), 24.92% (405/1,625) and 5.97% (97/1,625), respectively. Single infection was the predominant type (51.94%, 844/1625). HPV-6 and HPV-11 were the predominant types of single infection; HPV-6 and HPV-52 were the predominant types of paired combinations of multiple infection. 82.22% (1,336/1,625) of the cases had an age distribution of ≤ 24, 25-34, and 35-44. The distribution of some HPV genotypes had age specificity, annual specificity and gender specificity. The genotype detection rates of 2v, 4v and 9v showed a decreasing trend with ages (all P < 0.05). The genotype detection rates of 4v and 9v showed a decreasing trend over the 8-year period (both P < 0.05). The genotype detection rates of 4v and 9v in the male group were higher than those in the female group (both P < 0.05). The genotype detection rate of 9v was significantly higher than that of 2v and 4v in the female group (both P < 0.05). Conclusion: Our study demonstrated that low-risk infection and single infection were the main types of HPV infection in patients with genital warts, mainly among young patients. Our study provides epidemiological data for the detection, prevention and control of genital warts in China.

2.
Neurol Res ; : 1-11, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602308

RESUMO

OBJECTIVE: To investigate the correlation between gender differences in plasma lipoprotein phospholipase A2 (Lp-PLA2) levels and the risk of recurrent stroke in patients with acute ischaemic stroke in China. METHODS: We conducted a prospective follow-up study that included baselineLp-PLA2 levels and NIH Stroke Scale (NIHSS) scores in patients with ischaemic stroke upon admission. The diagnostic efficacy of the baseline Lp-PLA2 level for stroke recurrence was evaluated. And Kaplan‒Meier method was used to analyse the difference in the risk of recurrent stroke between these two groups among males and females. A paired t test was used to analyse the difference in Lp-PLA2 levels in male and female patients after follow-up. RESULTS: Baseline plasma Lp-PLA2 was higher in men and women with recurrent stroke than in those without recurrent stroke. The correlation between baseline Lp-PLA2 and neurological impairment was higher in female than male stroke patients (R = 0.338 and 0.253, respectively). Although weakly correlated with neurological impairment, baseline Lp-PLA2 was more effective in predicting recurrent stroke (AUC = 0.705 in men, 0.788 in women). A Cox model was used to compare the risk of stroke between the high- and low-Lp-PLA2 groups (OR = 3.98 in men, 2.61 in women). According to the follow-up time of 6 months as the node, Lp-PLA2 will give different risk indicators. CONCLUSION: Elevated plasma Lp-PLA2 is an independent risk factor for recurrent ischaemic stroke but is not strongly associated with the degree of cerebral damage. The predictive value of baseline Lp-PLA2 for stroke recurrence risk was higher in females than in males.

3.
Microb Pathog ; 185: 106392, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852552

RESUMO

Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.


Assuntos
Complicações Infecciosas na Gravidez , Sífilis Congênita , Sífilis , Recém-Nascido , Gravidez , Feminino , Humanos , Treponema pallidum , Sífilis Congênita/diagnóstico , Sífilis Congênita/epidemiologia , Sífilis Congênita/patologia , Placenta/patologia , Complicações Infecciosas na Gravidez/patologia , Natimorto
4.
Mol Microbiol ; 120(5): 684-701, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37718557

RESUMO

Syphilis is a persistent sexually transmitted disease caused by infiltration of the elusive pathogen Treponema pallidum. Despite the prevalence of human polymorphonuclear neutrophils (hPMNs) within cutaneous lesions, which are characteristic of incipient syphilis, their role in T. pallidum infection remains unclear. Tp92 is the only T. pallidum helical outer membrane protein that exhibits structural features similar to those of outer membrane proteins in other gram-negative bacteria. However, the functional mechanism of this protein in immune cells remains unclear. Neutrophils are short-lived cells that undergo innate apoptosis in response to external stimuli that typically influence this process. In this study, we determined that Tp92 impedes the activation of procaspase-3 via the ERK MAPK, PI3K/Akt, and NF-κB signaling pathways, consequently suppressing caspase-3 activity within hPMNs, and thereby preventing hPMNs apoptosis. Furthermore, Tp92 could also modulate hPMNs apoptosis by enhancing the expression of the anti-apoptotic protein Mcl-1, stimulating IL-8 secretion, and preserving the mitochondrial membrane potential. These findings provide valuable insights into the molecular mechanisms underlying T. pallidum infection and suggest potential therapeutic targets for syphilis treatment.


Assuntos
NF-kappa B , Sífilis , Humanos , NF-kappa B/metabolismo , Treponema pallidum/genética , Treponema pallidum/metabolismo , Sífilis/metabolismo , Sífilis/microbiologia , Sífilis/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Membrana/metabolismo , Neutrófilos , Apoptose
5.
Malar J ; 20(1): 374, 2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34538247

RESUMO

BACKGROUND: Plasmodium falciparum erythrocyte binding antigen-175 (PfEBA-175) is a candidate antigen for a blood-stage malaria vaccine, while various polymorphisms and dimorphism have prevented to development of effective vaccines based on this gene. This study aimed to investigate the dimorphism of PfEBA-175 on both the Bioko Island and continent of Equatorial Guinea, as well as the genetic polymorphism and natural selection of global PfEBA-175. METHODS: The allelic dimorphism of PfEBA-175 region II of 297 bloods samples from Equatorial Guinea in 2018 and 2019 were investigated by nested polymerase chain reaction and sequencing. Polymorphic characteristics and the effect of natural selection were analyzed using MEGA 7.0, DnaSP 6.0 and PopART programs. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 and Foldx program. RESULTS: Both Bioko Island and Bata district populations, the frequency of the F-fragment was higher than that of the C-fragment of PfEBA-175 gene. The PfEBA-175 of Bioko Island and Bata district isolates showed a high degree of genetic variability and heterogeneity, with π values of 0.00407 & 0.00411 and Hd values of 0.958 & 0.976 for nucleotide diversity, respectively. The values of Tajima's D of PfEBA-175 on Bata district and Bioko Island were 0.56395 and - 0.27018, respectively. Globally, PfEBA-175 isolates from Asia were more diverse than those from Africa and South America, and genetic differentiation quantified by the fixation index between Asian and South American countries populations was significant (FST > 0.15, P < 0.05). A total of 310 global isolates clustered in 92 haplotypes, and only one cluster contained isolates from three continents. The mutations A34T, K109E, D278Y, K301N, L305V and D329N were predicted as probably damaging. CONCLUSIONS: This study demonstrated that the dimorphism of F-fragment PfEBA-175 was remarkably predominant in the study area. The distribution patterns and genetic diversity of PfEBA-175 in Equatorial Guinea isolates were similar another region isolates. And the levels of recombination events suggested that natural selection and intragenic recombination might be the main drivers of genetic diversity in global PfEBA-175. These results have important reference value for the development of blood-stage malaria vaccine based on this antigen.


Assuntos
Antígenos de Protozoários/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Seleção Genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Guiné Equatorial , Humanos , Lactente , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Adulto Jovem
6.
Malar J ; 20(1): 124, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653360

RESUMO

BACKGROUND: Thrombospondin-related adhesive protein (TRAP) is a transmembrane protein that plays a crucial role during the invasion of Plasmodium falciparum into liver cells. As a potential malaria vaccine candidate, the genetic diversity and natural selection of PfTRAP was assessed and the global PfTRAP polymorphism pattern was described. METHODS: 153 blood spot samples from Bioko malaria patients were collected during 2016-2018 and the target TRAP gene was amplified. Together with the sequences from database, nucleotide diversity and natural selection analysis, and the structural prediction were preformed using bioinformatical tools. RESULTS: A total of 119 Bioko PfTRAP sequences were amplified successfully. On Bioko Island, PfTRAP shows its high degree of genetic diversity and heterogeneity, with π value for 0.01046 and Hd for 0.99. The value of dN-dS (6.2231, p < 0.05) hinted at natural selection of PfTRAP on Bioko Island. Globally, the African PfTRAPs showed more diverse than the Asian ones, and significant genetic differentiation was discovered by the fixation index between African and Asian countries (Fst > 0.15, p < 0.05). 667 Asian isolates clustered in 136 haplotypes and 739 African isolates clustered in 528 haplotypes by network analysis. The mutations I116T, L221I, Y128F, G228V and P299S were predicted as probably damaging by PolyPhen online service, while mutations L49V, R285G, R285S, P299S and K421N would lead to a significant increase of free energy difference (ΔΔG > 1) indicated a destabilization of protein structure. CONCLUSIONS: Evidences in the present investigation supported that PfTRAP gene from Bioko Island and other malaria endemic countries is highly polymorphic (especially at T cell epitopes), which provided the genetic information background for developing an PfTRAP-based universal effective vaccine. Moreover, some mutations have been shown to be detrimental to the protein structure or function and deserve further study and continuous monitoring.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Epitopos , Guiné Equatorial/epidemiologia , Frequência do Gene , Variação Genética , Haplótipos , Humanos , Vacinas Antimaláricas , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Polimorfismo Genético , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Seleção Genética
7.
Malar J ; 19(1): 245, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660484

RESUMO

BACKGROUND: Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various polymorphisms of the pfcsp gene among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of pfcsp in Bioko and the comparison among global P. falciparum population. METHODS: From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analysed with 2200 global pfcsp sequences mined from MalariaGEN Pf3k Database and NCBI. RESULTS: In Bioko, the N-terminus of pfcsp showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p > 0.05) and recombination occurred. The overall pattern of Bioko pfcsp gene had no obvious deviation from African mainland pfcsp (Fst = 0.00878, p < 0.05). The comparative analysis of Bioko and global pfcsp displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p < 0.05). The global pfcsp C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). CONCLUSIONS: The genetic polymorphism phenomena of pfcsp were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.


Assuntos
Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Guiné Equatorial , Haplótipos , Seleção Genética
8.
Infect Drug Resist ; 13: 1203-1212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431521

RESUMO

PURPOSE: Antimalarial drug resistance is one of the major challenges in global efforts to control and eliminate malaria. In 2006, sulfadoxine-pyrimethamine (SP) replaced with artemisinin-based combination therapy (ACT) on Bioko Island, Equatorial Guinea, in response to increasing SP resistance, which is associated with mutations in the dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes. PATIENTS AND METHODS: To evaluate the trend of molecular markers associated with SP resistance on Bioko Island from 2011 to 2017, 179 samples collected during active case detection were analysed by PCR and DNA sequencing. RESULTS: Pfdhfr and Pfdhps gene sequences were obtained for 90.5% (162/179) and 77.1% (138/179) of the samples, respectively. For Pfdhfr, 97.5% (158/162), 95.7% (155/162) and 98.1% (159/162) of the samples contained N51I, C59R and S108N mutant alleles, respectively. And Pfdhps S436A, A437G, K540E, A581G, and A613S mutations were observed in 25.4% (35/138), 88.4% (122/138), 5.1% (7/138), 1.4% (2/138), and 7.2% (10/138) of the samples, respectively. Two classes of previously described Pfdhfr-Pfdhps haplotypes associated with SP resistance and their frequencies were identified: partial (IRNI-SGKAA, 59.4%) and full (IRNI-SGEAA, 5.5%) resistance. Although no significant difference was observed in different time periods (p>0.05), our study confirmed a slowly increasing trend of the frequencies of these SP-resistance markers in Bioko parasites over the 7 years investigated. CONCLUSION: The findings reveal the general existence of SP-resistance markers on Bioko Island even after the replacement of SP as a first-line treatment for uncomplicated malaria. Continuous molecular monitoring and additional control efforts in the region are urgently needed.

9.
Mol Genet Genomic Med ; 8(2): e1061, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31872983

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme that protects red blood cells from oxidative damage. Although G6PD-deficient alleles appear to confer a protective effect of malaria, the link with clinical protection against Plasmodium infection is conflicting. METHODS: A case-control study was conducted on Bioko Island, Equatorial Guinea and further genotyping analysis used to detect natural selection of the G6PD A- allele. RESULTS: Our results showed G6PD A- allele could significantly reduce the risk of Plasmodium falciparum infection in male individuals (adjusted odds ratio [AOR], 0.43; 95% confidence interval [CI], 0.20-0.93; p < .05) and homozygous female individuals (AOR, 0.11; 95% CI, 0.01-0.84; p < .05). Additionally, the parasite densities were significantly different in the individuals with different G6PD A- alleles and individual levels of G6PD enzyme activity. The pattern of linkage disequilibrium and results of the long-range haplotype test revealed a strong selective signature in the region encompassing the G6PD A- allele over the past 6,250 years. The network of inferred haplotypes suggested a single origin of the G6PD A- allele in Africans. CONCLUSION: Our findings demonstrate that glucose-6-phosphate dehydrogenase (G6PD) A- allele could reduce the risk of P. falciparum infection in the African population and indicate that malaria has a recent positive selection on G6PD A- allele.


Assuntos
Alelos , Glucosefosfato Desidrogenase/genética , Malária/genética , População/genética , Seleção Genética , Adolescente , Adulto , População Negra/genética , Criança , Pré-Escolar , Feminino , Guiné , Homozigoto , Humanos , Lactente , Ilhas , Desequilíbrio de Ligação , Masculino , Plasmodium falciparum/patogenicidade , Polimorfismo de Nucleotídeo Único
10.
Malar J ; 18(1): 317, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533747

RESUMO

BACKGROUND: Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a promising candidate antigen for a blood-stage malaria vaccine. However, antigenic variation and diversity of PfAMA-1 are still major problems to design a universal malaria vaccine based on this antigen, especially against domain I (DI). Detail understanding of the PfAMA-1 gene polymorphism can provide useful information on this potential vaccine component. Here, general characteristics of genetic structure and the effect of natural selection of DIs among Bioko P. falciparum isolates were analysed. METHODS: 214 blood samples were collected from Bioko Island patients with P. falciparum malaria between 2011 and 2017. A fragment spanning DI of PfAMA-1 was amplified by nested polymerase chain reaction and sequenced. Polymorphic characteristics and the effect of natural selection were analysed using MEGA 5.0, DnaSP 6.0 and Popart programs. Genetic diversity in 576 global PfAMA-1 DIs were also analysed. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 program. RESULTS: 131 different haplotypes of PfAMA-1 were identified in 214 Bioko Island P. falciparum isolates. Most amino acid changes identified on Bioko Island were found in C1L. 32 amino acid changes identified in PfAMA-1 sequences from Bioko Island were found in predicted RBC-binding sites, B cell epitopes or IUR regions. Overall patterns of amino acid changes of Bioko PfAMA-1 DIs were similar to those in global PfAMA-1 isolates. Differential amino acid substitution frequencies were observed for samples from different geographical regions. Eight new amino acid changes of Bioko island isolates were also identified and their three-dimensional protein structural consequences were predicted. Evidence for natural selection and recombination event were observed in global isolates. CONCLUSIONS: Patterns of nucleotide diversity and amino acid polymorphisms of Bioko Island isolates were similar to those of global PfAMA-1 DIs. Balancing natural selection across DIs might play a major role in generating genetic diversity in global isolates. Most amino acid changes in DIs occurred in predicted B-cell epitopes. Novel sites mapped on a three dimensional structure of PfAMA-1 showed that these regions were located at the corner. These results may provide significant value in the design of a malaria vaccine based on this antigen.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Seleção Genética , Antígenos de Protozoários/metabolismo , Guiné Equatorial , Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
11.
Malar J ; 17(1): 458, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526609

RESUMO

BACKGROUND: Malaria is still a serious public health problem on Bioko Island (Equatorial Guinea), although the number of annual cases has been greatly reduced since 2004 through the Bioko Island Malaria Control Project (BIMCP). A better understanding of malaria parasite population diversity and transmission dynamics is critical for assessing the effectiveness of malaria control measures. The objective of this study is to investigate the genetic diversity of Plasmodium falciparum populations and multiplicity of infection (MOI) on Bioko Island 7 years after BIMCP. METHODS: A total of 181 patients with uncomplicated P. falciparum malaria diagnosed with microscopy were collected from Bioko Island from January 2011 to December 2014. Parasite DNA was extracted using chelex-100 and species were identified using a real-time PCR followed by high-resolution melting. Plasmodium falciparum msp1 and msp2 allelic families were determined using nested PCR. RESULTS: Three msp1 alleles (K1, MAD20, and RO33) and two msp2 alleles (FC27 and 3D7) were analysed in all samples. In msp1, the MAD20 allelic family was predominant with 96.69% (175/178) followed respectively by the K1 allelic family with 96.07% (171/178) and R033 allelic family with 70.78% (126/178). In msp2, the FC27 allelic family was the most frequently detected with 97.69% (169/173) compared to 3D7 with 72.25% (125/173). Twenty-six different alleles were observed in msp1 with 9 alleles for K1, 9 alleles for MAD20 and 8 alleles for R033. In msp2, 25 individual alleles were detected with 5 alleles for FC27 and 20 alleles for 3D7. The overall MOI was 5.51 with respectively 3.5 and 2.01 for msp1 and msp2. A significant increase in overall MOI was correlated with the age group of the patients (P = 0.026) or parasite densities (P = 0.04). CONCLUSIONS: The present data showed high genetic diversity and MOI values among the P. falciparum population in the study, reflecting both the high endemic level and malaria transmission on Bioko Island. These data provide valuable information for surveillance of P. falciparum infection and for assessing the appropriateness of the current malarial control strategies in the endemic area.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Criança , Pré-Escolar , DNA de Protozoário/genética , Guiné Equatorial/epidemiologia , Feminino , Frequência do Gene/genética , Variação Genética/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Adulto Jovem
12.
Afr J AIDS Res ; 16(1): 65-70, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28367743

RESUMO

Malaria and HIV are two of the most severe public health problems in Africa. However, epidemiological data on Bioko Island is scarce. To investigate the prevalence of malaria and HIV infections and assess association of malaria and HIV infections and possible confounding factors, we performed a cross-sectional survey of people of malaria-endemic Bioko Island, Equatorial Guinea. A cross-sectional study of 1 526 subjects was carried out to determine the prevalence of malaria and HIV infection in Malabo region hospital on Bioko Island. Questionnaires were administered and venous blood samples were drawn for malaria parasites and HIV detection. The prevalence of participants infected with malaria and HIV in this area were 13.8% and 6.6% respectively. The average prevalence of co-infection for malaria and HIV was 0.92%. HIV-infection was significantly associated with the age and gender. Malaria infections were significantly associated with the age. This study showed that the prevalence of HIV and malaria on Bioko Island was higher than expected, although the co-infection prevalence of malaria and HIV was low. The results also indicated that malaria and HIV infections lead to more public health risk to youngsters and women.


Assuntos
Infecções por HIV/epidemiologia , Malária/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Coinfecção , Estudos Transversais , Guiné Equatorial/epidemiologia , Feminino , Humanos , Lactente , Ilhas , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Carga Parasitária , Vigilância da População , Prevalência , Fatores de Risco , Adulto Jovem
13.
Int J Parasitol Drugs Drug Resist ; 6(1): 54-59, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27054064

RESUMO

OBJECTIVE: With emergence and geographically expanding of antimalarial resistance worldwide, molecular markers are essential tool for surveillance of resistant Plasmodium parasites. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain are shown to be associated with artemisinin (ART) resistance in vivo and in vitro. This study aims to investigate the ART resistance-associated polymorphisms of K13-propeller and PfATPase6 genes in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea (EG). METHODS: A total of 172 samples were collected from falciparum malaria patients on Bioko Island between 2013 and 2014. The polymorphisms of K13-propeller and PfATPase6 genes were analyzed by Nest-PCR and sequencing. RESULTS: Sequences of K13-propeller and PfATPase6 were obtained from 90.74% (98/108) and 91.45% (139/152) samples, respectively. The 2.04% (2/98) cases had non-synonymous K13-propeller A578S mutation but no found the mutations associated with ART resistance in Southeast Asia. For PfATPase6, the mutations were found at positions N569K and A630S with the mutation prevalence of 7.91% (11/139) and 1.44% (2/139), respectively. In addition, a sample with the mixed type at position I723V was discovered (0.72%, 1/139). CONCLUSIONS: This study initially offers an insight of K13-propeller and PfATPase6 polymorphisms on Bioko Island, EG. It suggests no widespread ART resistance or tolerance in the region, and might be helpful for developing and updating guidance for the use of ART-based combination therapies (ACTs).


Assuntos
Artemisininas/farmacologia , ATPases Transportadoras de Cálcio/genética , DNA de Protozoário/genética , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Guiné Equatorial/epidemiologia , Genótipo , Humanos , Malária Falciparum/epidemiologia , Mutação , Mutação de Sentido Incorreto , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Análise de Sequência de DNA
14.
PLoS One ; 10(10): e0139947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448460

RESUMO

BACKGROUND: Regular screening of transfusion-transmissible infections (TTIs), such as human immunodeficiency virus (HIV), hepatitis B and hepatitis C virus (HBV and HCV, respectively), and Treponema pallidum, in blood donors is essential to guaranteeing clinical transfusion safety. This study aimed to determine the seroprevalence of four TTIs among blood donors on Bioko Island, Equatorial Guinea (EG). METHODS: A retrospective survey of blood donors from January 2011 to April 2013 was conducted to assess the presence of HIV, HBV, HCV and T. pallidum. The medical records were analyzed to verify the seroprevalence of these TTIs among blood donations stratified by gender, age and geographical region. RESULTS: Of the total 2937 consecutive blood donors, 1098 (37.39%) had a minimum of one TTI and 185 (6.29%) harbored co-infections. The general seroprevalence of HIV, HBV, HCV and T. pallidum were 7.83%, 10.01%, 3.71% and 21.51%, respectively. The most frequent TTI co-infections were HBV-T. pallidum 60 (2.04%) and HIV-T. pallidum 46 (1.57%). The seroprevalence of HIV, HBV, HCV and T. pallidum were highest among blood donors 38 to 47 years, 18 to 27 years and ≥ 48 years age, respectively (P<0.05). The seroprevalence of TTIs varied according to the population from which the blood was collected on Bioko Island. CONCLUSIONS: Our results firstly provide a comprehensive overview of TTIs among blood donors on Bioko Island. Strict screening of blood donors and improved hematological examinations using standard operating procedures are recommended.


Assuntos
Infecções por HIV/epidemiologia , Hepatite B/epidemiologia , Sífilis/epidemiologia , Treponema pallidum , Adolescente , Adulto , Doadores de Sangue , Guiné Equatorial/epidemiologia , Feminino , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Estudos Soroepidemiológicos , Adulto Jovem
15.
Infect Genet Evol ; 36: 552-556, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26325683

RESUMO

BACKGROUND: Antimalarial drug resistance is a primary public health problem. Haplotypes of pfcrt and pfmdr1 gene have been implicated to be molecular markers of chloroquine (CQ) resistance. This study aims to explore mutation distribution of Pfcrt and Pfmdr1 in Bioko Island, Equatorial Guinea (EG). METHODS: Blood samples were collected from different districts of Bioko. The single nucleotide polymorphisms in Pfcrt (codons 72 to 76) and Pfmdr1 (codons 86, 130, 184, 1034, 1042, 1109 and 1246) were assessed by nested PCR with DNA sequencing and haplotype prevalences were also determined. RESULTS: Analysis of Pfcrt and Pfmdr1 mutations was successful in 151 and 157 samples respectively out of the 172 samples taken for this study. The mutations of Pfcrt and Pfmdr1 were found in 98.67% and 89.81% isolates, respectively. The Pfcrt 74-76, Pfmdr1 86, and Pfmdr1 184 were 92.05%, 50.32%, and 87.26% found mostly of mutation type, respectively. Three haplotypes coding 72-76 of Pfcrt were found including CVMNK, CVIET, and CVM/I N/E K/T, which accounted for 1.33%, 92.05%, and 6.62%, respectively. No mutation in Pfmdr1-N1 codon at 130 and Pfmdr1-N2 (S1034C, N1042D, V1109I, and D1246Y) was detected. The types coding 86 and 184 in Pfmdr1 were found including NY, YY, NF, YF, NY/F and YY/F, which accounted for 10.19%, 2.55%, 33.76%, 45.22%, 5.73% and 2.55%, respectively. CONCLUSION: High prevalence of Pfcrt CVIET and Pfmdr1 86Y, 184F double mutations confirm high-level CQ resistance (CQR) and might suggest reduced susceptibility of Plasmodium falciparum isolates to AQ in Bioko, EG. It establishes fundamental data for detection of P. falciparum CQR with molecular markers and will promotes the surveillance level of drug resistance in Bioko, EG.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Análise Mutacional de DNA , Guiné Equatorial/epidemiologia , Haplótipos , Humanos , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Prevalência
16.
Exp Ther Med ; 9(2): 469-475, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25574218

RESUMO

Apolipoprotein E (APOE) gene polymorphism can affect APOE gene transcription, serum lipid levels and repair of tissue damage, which could place individuals at serious risk of cardiovascular disease or certain infectious diseases. Recently, high-resolution melting (HRM) analysis was reported to be a simple, inexpensive, accurate and sensitive method for the genotyping or/and scanning of rare mutations. For this reason, an HRM analysis was used in the present study for APOE genotyping in the Southern Chinese Han and African Fang populations. A total of 100 healthy Southern Chinese Han and 175 healthy African Fang individuals attended the study. Polymerase chain reaction-DNA sequencing was used as a reference method for the genotyping of these samples. The six APOE genotypes could all be rapidly and efficiently identified by HRM analysis, and 100% concordance was found between the HRM analysis and the reference method. The allele frequencies of APOE in the Southern Chinese Han population were 7.0, 87.5 and 5.5% for ɛ2, ɛ3 and ɛ4, respectively. In the African Fang population, the allele frequencies of APOE were 24.3, 65.7 and 10.0% for ɛ2, ɛ3 and ɛ4, respectively. A statistically significant difference was found between the allele frequencies between the populations (P<0.05). In conclusion, the present study revealed the molecular characterization of APOE gene polymorphism in the Han population from the Chaozhou region of Southern China and the Fang population from Equatorial Guinea. The findings of the study indicated that HRM analysis could be used as an accurate and sensitive method for the rapid screening and identification of APOE genotypes in prospective clinical and population genetic analyses.

17.
Pathog Glob Health ; 108(7): 339-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25348116

RESUMO

OBJECTIVE: Drug resistance against Plasmodium falciparum has been recognized as the crucial obstacle to curbing mortality and morbidity from malaria. To investigate the distribution and pattern of multidrug resistance 1 (pfmdr1) gene polymorphisms in P. falciparum, isolates collected from the malaria high-endemic Bioko Island, Equatorial Guinea. METHODS: Blood samples were collected from 217 patients with P. falciparum malaria during rainy season in 2012 on Bioko Island. These samples were extracted using Chelex to obtain parasite DNA. Nest-polymerase chain reaction (PCR) and sequencing were employed to detect mutations (N86Y, E130K, Y184F, S1034C, N1042D, V1109I, and D1246Y) and haplotypes in pfmdr1 gene. RESULTS: A total of 151 samples were successfully detected for pfmdr1 mutations from the 217 patients. Pfmdr1 mutations were found in 91·39% (138/151) P. falciparum isolates. However, no mutation at 130 and 1109 was identified from these samples. Four haplotypes coding 86, 184, 1034, 1,042, and 1,246 were found including NYSND, YYSND, NFSND, and YFSND, which accounted for 8·61% (13/151), 2·65% (4/151), 29·80% (45/151), and 58·94% (89/151), respectively. CONCLUSIONS: Our results exhibited hypersensitivity to lumefantrine (LU) and mefloquine (MQ) and resistance to chloroquine (CQ) and amodiaquine (AQ) in P. falciparum isolates from Bioko Island. This information will be useful for anti-malarial drug policy in Equatorial Guinea.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação de Sentido Incorreto , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , DNA de Protozoário/química , DNA de Protozoário/genética , Feminino , Frequência do Gene , Guiné/epidemiologia , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA