Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096717

RESUMO

BACKGROUND: 2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyrimidine (PhIP) is a known carcinogen generated mainly from cooking meat and environmental pollutants. It is worth exploring the potential of natural small-molecule drugs to protect against adverse effects on embryonic development. PURPOSE: In this study, we investigated the potential toxicological effects of PhIP on embryonic heart tube formation and the effect of Sulforaphane (SFN) administration on the anti-toxicological effects of PhIP on embryonic cardiogenesis. STUDY DESIGN AND METHODS: First, the chicken embryo model was used to investigate the different phenotypes of embryonic heart tubes induced by various concentrations of PhIP exposure. We also proved that SFN rescues PhIP-induced embryonic heart tube malformation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR) and flow cytometry experiments were employed to explore the mechanisms by which SFN protects cardiac cells from oxidative damage in the presence of PhIP. We used RNA-seq analysis, molecular docking, in situ hybridization, cellular thermal shift assay and solution nuclear magnetic resonance spectroscopy to explore whether SFN protects cardiogenesis through the EGFR/MAPK signaling pathway. RESULTS: The study showed that PhIP might dose-dependently interfere with the C-looping heart tube (mild) or the fusion of a pair of bilateral endocardial tubes (severe) in chick embryos, while SFN administration prevented cardiac cells from oxidative damage in the presence of high-level PhIP. Furthermore, we found that excessive reactive oxygen species (ROS) production and subsequent apoptosis were not the principal mechanisms by which low-level PhIP induced malformation of heart tubes. This is due to PhIP-disturbed Mitogen-activated protein kinase (MAPK) signaling pathway could be corrected by SFN administration. CONCLUSIONS: This study provided novel insight that PhIP exposure could increase the risk of abnormalities in early cardiogenesis and that SFN could partially rescue various concentrations of PhIP-induced abnormal heart tube formation by targeting EGFR and mediating EGFR/MAPK signaling pathways.


Assuntos
Cardiopatias Congênitas , Imidazóis , Isotiocianatos , Sulfóxidos , Animais , Embrião de Galinha , Simulação de Acoplamento Molecular , Isotiocianatos/farmacologia , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , Receptores ErbB/metabolismo , Apoptose
2.
Front Immunol ; 12: 783370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880876

RESUMO

The members of the protein tyrosine phosphatase (PTP) family are key regulators in multiple signal transduction pathways and therefore they play important roles in many cellular processes, including immune response. As a member of PTP family, protein tyrosine phosphatase receptor type O (PTPRO) belongs to the R3 receptor-like protein tyrosine phosphatases. The expression of PTPRO isoforms is tissue-specific and the truncated PTPRO (PTPROt) is mainly observed in hematopoietic cells, including B cells, T cells, macrophages and other immune cells. Therefore, PTPROt may play an important role in immune cells by affecting their growth, differentiation, activation and immune responses. In this review, we will focus on the regulatory roles and underlying molecular mechanisms of PTPRO/PTPROt in immune cells, including B cells, T cells, and macrophages.


Assuntos
Linfócitos B/imunologia , Macrófagos/imunologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Linfócitos T/imunologia , Animais , Linfócitos B/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA