Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Environ Toxicol Chem ; 42(11): 2302-2316, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589402

RESUMO

Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Fluorocarbonos , Animais , Invertebrados , Medição de Risco , Pesquisa , Fluorocarbonos/toxicidade
3.
Small Methods ; 7(6): e2201235, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855188

RESUMO

Adhesives with strong and stable underwater adhesion performance play a critical role in industrial and biomedical fields. However, achieving strong underwater adhesion, especially in flowing aqueous and blood environments, remains challenging. In this work, a novel solvent-exchange-triggered adhesive of catechol-functionalized polyethylenimine ethoxylated is presented. The authors show that the dimethyl sulfoxide (DMSO) solution of the catechol-functionalized polymer can be directly applied to various substrates and exhibits robust dry/underwater adhesion performance induced through in situ liquid-to-solid phase transition triggered by water-DMSO solvent exchange. The adhesive can even strongly bond low-surface-energy substrates (e.g., > 86 kPa for polytetrafluoroethylene) in diverse environments, including deionized water, air, phosphate-buffered saline solution, seawater, and aqueous conditions with different pH values. Moreover, the adhesive exhibits strong adhesion to biological tissues and can be used as a hemostatic sealant to prevent bleeding from arteries and severe trauma to the viscera. The adhesives developed in this study with strong dry/underwater adhesion performance and excellent hemostatic capabilities display enormous application prospects in the biomedical fields.

4.
ACS Appl Mater Interfaces ; 15(1): 1914-1924, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36583973

RESUMO

As an emerging antibacterial strategy, photothermal disinfection attracts increasing attention due to its advantages of high efficacy, wide pertinence, and non-drug resistance. However, the unavoidable shielding of observation by photothermal components and the possible damage to normal tissue caused by hyperthermia restrict its applications. Herein, we propose a composite hydrogel with the ability of on-demand generation of photothermal components and mild-temperature photothermal disinfection by elegantly tuning the binding and release of iodine and starch. The composite hydrogel is obtained by blending iodine-adsorbed pH-responsive ZIF-8 nanoparticles (NPs) with a starch-based hydrogel matrix. Through a convenient pH response, the composite hydrogel leverages the triple functions of iodine, which serves as a disinfectant and reacts with starch to generate a photothermal agent and color indicator, allowing photothermal-chemotherapy combined disinfection on demand. In vitro antibacterial experiments show that the composite hydrogel can respond to the acidification of the microenvironment caused by bacterial metabolism and produce corresponding color changes, realizing naked-eye observation. Meanwhile, under the combined treatment of heating/I2/Zn2+, the composite hydrogel can completely kill Escherichia coli and Staphylococcus aureus at a mild temperature of ∼41 °C. This study represents a breakthrough in on-demand generation of photothermal hydrogels for mild-temperature photothermal disinfection.


Assuntos
Hipertermia Induzida , Iodo , Amido , Hidrogéis/farmacologia , Hidrogéis/química , Iodo/farmacologia , Temperatura , Desinfecção , Fototerapia , Antibacterianos/química
5.
Macromol Biosci ; 23(2): e2200378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36337010

RESUMO

Photothermal therapies (PTT), with spatiotemporally controllable antibacterial capabilities without inducing resistance, have shown encouraging prospects in the field of infected wound treatments. As an important platform for PTT, photothermal hydrogels exhibit attractive advantages in the field of infected wound treatment due to their excellent biochemical properties and have been intensively explored in recent years. This review summarizes the progress of the photothermal hydrogels for promoting infected wound healing. Three major elements of photothermal hydrogels, i.e., photothermal materials, hydrogel matrix, and construction methods, are introduced. Furthermore, different strategies of photothermal hydrogels in the treatment of infected wounds are summarized. Finally, the challenges and prospects in the clinical treatment of photothermal hydrogels are discussed.


Assuntos
Antibacterianos , Infecção dos Ferimentos , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Cicatrização
6.
Int J Biol Macromol ; 220: 1188-1196, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044941

RESUMO

Optical imaging and phototherapy are of great significance in the detection, diagnosis, and therapy of diseases. Depth of light in the skin tissues in optical imaging and phototherapy can be significantly improved with the assistance of optical clearing technology by weakening the scattering from the refractive indexes inhomogeneity among skin constituents. However, the barrier of the stratum corneum restricts the penetration of optical clearing agents into deep tissues and limits the optical clearing effects. Herein, we develop an optical clearing strategy by using dissolving microneedle (MN) patches made of hyaluronic acid (HA), which can effortlessly and painlessly penetrate the stratum corneum to reach the epidermis and dermis. By using the HA MN patches, the transmittance of skin tissues is improved by about 12.13 %. We show that the HA MN patches enhance the clarity of blood vessels to realize naked-eyes observation. Moreover, a simulated subcutaneous tumor cells experiment also verifies that the optical clearing effects of the HA MN patch efficiently boost the efficiency of the photodynamic killing of tumor cells by 26.8 %. As a courageous attempt, this study provides a promising avenue to improve the optical clearing effects for further clinical application of optical imaging and phototherapy.


Assuntos
Ácido Hialurônico , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/farmacologia , Absorção Cutânea
7.
ACS Appl Mater Interfaces ; 14(14): 16546-16557, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362947

RESUMO

Solar steam generation provides a promising and low-cost solution for freshwater production in energy scarcity areas. However, in real-world applications, evaporators are easily affected by microorganism contamination in source water, causing surface corrosion, structural damage, or even invalidation. Developing anti-biofouling and antibacterial evaporators is significant for long-term stable freshwater production. Herein, a composite polyelectrolyte photothermal hydrogel consisting of sulfobetaine methacrylate (SBMA), [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC), and polypyrrole (PPy) with anti-biofouling and antibacterial properties is developed. Crediting sufficient ammonium groups and zwitterionic segments, the optimized polyelectrolyte hydrogel exhibits an ∼90% antibacterial ratio against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and effectively controls biological contamination. Under 1.0 kW m-2 solar irradiation, a rapid water evaporation rate of ∼1.690 kg m-2 h-1 and a high solar-to-evaporation efficiency of ∼95.94% are achieved with the photothermal hydrogel. We show that a lab-made setup integrated with the hydrogel can realize ∼0.455 kg m-2 h-1 freshwater production from seawater under natural sunlight. Moreover, the hydrogel exhibits excellent durability with a stable evaporation rate of ∼1.617 kg m-2 h-1 in real seawater for over 6 weeks, making it fullhearted in the real-world application of solar steam generation.


Assuntos
Luz Solar , Purificação da Água , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Hidrogéis/farmacologia , Polieletrólitos , Polímeros/química , Polímeros/farmacologia , Pirróis , Staphylococcus aureus , Vapor , Água/química
8.
ACS Appl Mater Interfaces ; 14(4): 5856-5866, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061361

RESUMO

Rapid and sensitive diagnostics in the early stage of bacterial infection and immediate treatment play critical roles in the control of infectious diseases. However, it remains challenging to develop integrated systems with both rapid detection of bacterial infection and timely on-demand disinfection ability. Herein, we demonstrate a photonic hydrogel platform integrating visual diagnosis and on-site photothermal disinfection by incorporating Fe3O4@C nanoparticles into a poly(hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAAm) matrix. In vitro experiments demonstrate that such a hydrogel can respond to pH variation caused by bacterial metabolism and generate the corresponding color changes to realize naked-eye observation. Meanwhile, its excellent photothermal conversion ability enables it to effectively kill bacteria by destroying cell membranes under near-infrared irradiation. Moreover, the pigskin infection wound model also verifies the bacterial detection performance and disinfection ability of the hydrogel in vivo. Our strategy demonstrates a new approach for visual diagnosis and treatment of bacterial infections.


Assuntos
Desinfetantes/uso terapêutico , Hidrogéis/química , Nanopartículas de Magnetita/uso terapêutico , Infecções Cutâneas Estafilocócicas/diagnóstico por imagem , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Resinas Acrílicas/química , Animais , Desinfetantes/química , Desinfetantes/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Raios Infravermelhos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efeitos da radiação , Camundongos , Células NIH 3T3 , Terapia Fototérmica , Poli-Hidroxietil Metacrilato/química , Staphylococcus aureus/efeitos dos fármacos , Suínos
9.
Appl Opt ; 61(30): 9069-9077, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36607036

RESUMO

A large number of certified samples are usually required to build models in the quantitative analysis of complicated matrices in laser-induced-breakdown spectroscopy (LIBS). Because of differences among instruments, including excitation and collection efficiencies, a quantitative model made on one instrument is difficult to apply directly to other instruments. Each instrument requires a large number of samples to model, which is very labor intensive and will hinder the rapid application of the LIBS technique. To eliminate the differences in spectral data from different instruments and reduce the cost of building new models, a piecewise direct standardization method combined with partial least squares (PLS_PDS) is studied in this work. Two portable LIBS instruments with the same configuration are used to obtain spectral data, one of which is called a master instrument because its calibration model is directly built on a large number of labeled samples, and the other of which is called a slave instrument because its model is obtained from the master instrument. The PLS_PDS method is used to build a transfer function of spectra between the master instrument and slave instrument to reduce the spectral difference between two instruments, and thus one calibration model can adapt to different instruments. Results show that for multiple elemental analyses of aluminium alloy samples, the number of samples required for slave modeling was reduced from 51 to 14 after model transferring by PLS_PDS, and the quantitative performance of the slave instrument was close to that of the master instrument. Therefore, the model transfer method can obviously reduce the sample number of building models for slave instruments, and it will be beneficial to advance the application of LIBS.

10.
Clin Genet ; 86(3): 264-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24000829

RESUMO

Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities, and it is increasingly used in prenatal diagnosis. However, its diagnostic capabilities in prenatal diagnosis vary, and clinical experiences have failed to establish a consensus regarding CMA indications, the design and resolution of microarrays, and the notification and interpretation of copy number variations (CNVs). We present our 5 years of clinical experience using whole-genome high-resolution single nucleotide polymorphism (SNP) arrays to investigate 446 fetuses that had structural malformations detected with ultrasound but for which standard karyotyping analysis showed normal karyotypes. CMA revealed genomic CNVs in 323 (72.4%) cases and clinically significant CNVs in 11.4% of the fetuses (51/446), including 2 cases of uniparental disomy (UPD) as well as 1 case of cryptic mosaic monosomy of chromosome X. Variants of unknown significance (VOUS) existed in 2.0% of the tested fetuses (9/446). Our results demonstrate the value of whole-genome high-resolution SNP arrays in fetuses with congenital malformations and give a higher detection rate of clinically significant genomic imbalance, especially for detecting UPD. Sufficient communication between technicians and genetic counselors, along with parental testing and comparison with data from in-house or international sources, can significantly reduce VOUS.


Assuntos
Cromossomos Humanos/genética , Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Variações do Número de Cópias de DNA/genética , Variação Genética , Análise em Microsséries/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA