Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; : 2348498, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686555

RESUMO

ABSTRACTBacillus paranthracis, a Gram-positive conditional pathogen of Bacillus cereus group species, is capable of causing foodborne and waterborne illnesses, leading to intestinal diseases in humans characterized by diarrhea and vomiting. However, documented cases of B. paranthracis infection outbreaks are rare in the world, and the genomic background of outbreak strains is seldom characterized. This study retrospectively analyzed strains obtained from a outbreak in schools, as well as from water systems in peri-urban areas, China, in 2020.In total, 28 B. cereus group isolates were retrieved, comprising 6 from stool samples and 22 from water samples. Epidemiological and phylogenetic investigations indicated that the B. paranthracis isolate from drinking water as the causative agent of the outbreak. Genomic comparison revealed a high degree of consistency among 8 outbreak-related strains in terms of antimicrobial resistance gene profiles, virulence gene profiles, genomic content, and multilocus sequence typing (MLST). The strains related to the outbreak show highly similar genomic ring diagrams and close phylogenetic relationships. Additionally, this study shed light on the pathogenic potential and complexity of B. cereus group through its diversity in virulence genes and mice infection model. The findings highlight the usefulness of B. paranthracis genomes in understanding genetic diversity within specific environments and in tracing the source of pathogens during outbreak situations, thereby enabling targeted infection control interventions.

2.
Front Public Health ; 10: 1017050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589964

RESUMO

Background: The worldwide emergence and diffusion of extended-spectrum ß-lactamase-K. pneumoniae (ESBL-KP) is of particular concern. Although ESBL-KP can inhabit the human gut asymptomatically, colonization with ESBL-KP is associated with an increased risk of ESBL-KP infection and mortality. In this study, we investigated the prevalence and characteristics of ESBL-KP in fecal samples from healthy persons in 12 villages in Shandong Province, China. Methods: Screening for ESBL-KP in fecal samples was performed by selective cultivation. The bacterial species were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rDNA sequence analysis. Minimum inhibitory concentrations (MICs) of 16 antibiotics were determined by the agar dilution method. Plasmid replicons, antimicrobial resistance genes and Sequence types (STs) of the isolates were determined by whole-genome sequencing (WGS). Genetic relatedness of ESBL-KP isolates was determined by the single nucleotide polymorphisms (SNP). The S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) was used to characterize the plasmids carried by ESBL-KP isolates. Conjugation assays was used to verify the transferability of bla CTX - M. Results: ESBL-KP prevalence rates increased from 12.0% in 2015 to 27.5% in 2017. The experimental results showed that 97% of isolates had multi-drug resistance. Multiple ESBL resistance genotypes were commonly detected in the isolates. STs among the ESBL-KP isolates were diverse. All 69 bla CTX-M-3-positive isolates were located on plasmids, and these genes could be transferred with plasmids between different strains. Phylogenetic analysis showed the possibility of transmission among some isolates. Conclusion: This study obtained the drug resistance patterns, the drug resistance phenotype and molecular characteristics of fecal-derived ESBL-KP in rural communities in Shandong Province, China. We report a rapid increase in occurrence of ESBL-KP among fecal samples collected from healthy rural residents of Shandong Province from 2015 to 2017. The carriage rate of multidrug-resistant bacteria in healthy residents is increasing. Thus, a need for further monitoring and possible interventions of ESBL-KP in this region is warranted.


Assuntos
Farmacorresistência Bacteriana , Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , beta-Lactamases/genética , Genômica , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Filogenia , População Rural
3.
Front Microbiol ; 10: 2678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824461

RESUMO

Raoultella ornithinolytica is an opportunistic pathogen of the Enterobacteriaceae family and has been implicated in nosocomial infections in recent years. The aim of this study was to characterize a carbapenemase-producing R. ornithinolytica isolate and three extended-spectrum ß-lactamase (ESBL)-producing R. ornithinolytica isolates from stool samples of adults in a rural area of Shandong Province, China. The species were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rDNA sequence analysis. Antimicrobial susceptibility test showed that all four isolates were multidrug-resistant (MDR). The whole genome sequence (WGS) of these isolates was determined using an Illumina HiSeq platform, which revealed MDR-related genes. The S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) was used to characterize the plasmids carried by the R. ornithinolytica isolates. The bla NDM-1 and bla CTX-M-3 genes were probed using Southern blotting, which confirmed the location of both genes on the same plasmid with molecular weight of 336.5-398.4 kb. The transferability of bla NDM-1 and bla CTX-M was also confirmed by conjugation assays. Finally, BLAST analysis of both genes showed that mobile genetic elements were associated with the spread of drug resistance genes. Taken together, we report the presence of conjugative bla NDM-1 and bla CTX-M plasmids in R. ornithinolytica isolates from healthy humans, which indicate the possibility of inter-species transfer of drug resistance genes. To the best of our knowledge, this is the first study to isolate and characterize carbapenemase-producing R. ornithinolytica and ESBL-producing R. ornithinolytica isolates from healthy human hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA