Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chin J Integr Med ; 24(6): 474-480, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29860581

RESUMO

Multidrug resistance (MDR) is a major cause of cancer chemotherapy failure, and it is important to develop suitable reversal agents to overcome MDR. A majority of chemical reversal agents have acceptable reversal effects. However, the toxicity and adverse reactions associated with these agents restricts their clinical use. Chinese medicines (CMs) have lower toxicities and adverse reactions and are associated with multiple components, multiple targets and reduced toxicity. CMs have several advantages and could reverse MDR, decrease drug dosage, enhance patient compliance and increase efficacy. This review summarizes the current progress of CM reversal agents..


Assuntos
Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Pesquisa , Humanos , Extratos Vegetais/farmacologia
2.
J Cancer ; 8(6): 1103-1112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529625

RESUMO

Objective: To investigate the reversal effect of tuberostemonine on MDR in myelogenous leukemia cells K562/ADR. Methods: Human myelogenous leukemia cells K562 and their adriamycin-resistance cells K562/ADR were used. The growth curve of cells treated by tuberostemonine and the Non-toxic concentration of tuberostemonine were determined by MTT, Cell apoptosis was determined by MTT and flow cytometry. The expression of MDR1, Survivin and Livin was detected by RT-PCR. The activity of P-gp was detected by flow cytometry. Western blot was used to detect the expression of NF-κB and Survivin. Results: The effect of tuberostemonine on K562/ADR showed a dose-dependence, and 350µg/mL and 500µg/mL of tuberostemonine could inhibit the expression of MDR1 (P<0.05). While no function difference of P-gp was detected. With the increased concentration of tuberostemonine, the inhibitory effect were enhanced to the expression of NF-κB. Tuberostemonine combined with adriamycin could time-dependently inhibit the cell proliferation (P<0.05) and obviously promoted the cell apoptosis (P<0.05). Also the tuberostemonine could inhibit the expression of Survivin. Conclusion: There are no direct relations between tuberostemonine and P-gp, but tuberostemonine could reverse the multidrug resistance of K562/ADR via down-regulating the expression of Nf-κB and inhibiting th1e expression of Survivin.

3.
Drug Deliv ; 23(1): 41-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24735247

RESUMO

This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacocinética , Valsartana/administração & dosagem , Valsartana/farmacocinética , Animais , Disponibilidade Biológica , Portadores de Fármacos/química , Liofilização , Derivados da Hipromelose , Masculino , Poloxâmero , Polietilenoglicóis , Polímeros , Ratos , Ratos Sprague-Dawley , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA