Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(6): 109908, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827397

RESUMO

Accurate detection of pathogens, particularly distinguishing between Gram-positive and Gram-negative bacteria, could improve disease treatment. Host gene expression can capture the immune system's response to infections caused by various pathogens. Here, we present a deep neural network model, bvnGPS2, which incorporates the attention mechanism based on a large-scale integrated host transcriptome dataset to precisely identify Gram-positive and Gram-negative bacterial infections as well as viral infections. We performed analysis of 4,949 blood samples across 40 cohorts from 10 countries using our previously designed omics data integration method, iPAGE, to select discriminant gene pairs and train the bvnGPS2. The performance of the model was evaluated on six independent cohorts comprising 374 samples. Overall, our deep neural network model shows robust capability to accurately identify specific infections, paving the way for precise medicine strategies in infection treatment and potentially also for identifying subtypes of other diseases.

2.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857587

RESUMO

MOTIVATION: The confusion of acute inflammation infected by virus and bacteria or noninfectious inflammation will lead to missing the best therapy occasion resulting in poor prognoses. The diagnostic model based on host gene expression has been widely used to diagnose acute infections, but the clinical usage was hindered by the capability across different samples and cohorts due to the small sample size for signature training and discovery. RESULTS: Here, we construct a large-scale dataset integrating multiple host transcriptomic data and analyze it using a sophisticated strategy which removes batch effect and extracts the common information from different cohorts based on the relative expression alteration of gene pairs. We assemble 2680 samples across 16 cohorts and separately build gene pair signature (GPS) for bacterial, viral, and noninfected patients. The three GPSs are further assembled into an antibiotic decision model (bacterial-viral-noninfected GPS, bvnGPS) using multiclass neural networks, which is able to determine whether a patient is bacterial infected, viral infected, or noninfected. bvnGPS can distinguish bacterial infection with area under the receiver operating characteristic curve (AUC) of 0.953 (95% confidence interval, 0.948-0.958) and viral infection with AUC of 0.956 (0.951-0.961) in the test set (N = 760). In the validation set (N = 147), bvnGPS also shows strong performance by attaining an AUC of 0.988 (0.978-0.998) on bacterial-versus-other and an AUC of 0.994 (0.984-1.000) on viral-versus-other. bvnGPS has the potential to be used in clinical practice and the proposed procedure provides insight into data integration, feature selection and multiclass classification for host transcriptomics data. AVAILABILITY AND IMPLEMENTATION: The codes implementing bvnGPS are available at https://github.com/Ritchiegit/bvnGPS. The construction of iPAGE algorithm and the training of neural network was conducted on Python 3.7 with Scikit-learn 0.24.1 and PyTorch 1.7. The visualization of the results was implemented on R 4.2, Python 3.7, and Matplotlib 3.3.4.


Assuntos
Transcriptoma , Viroses , Humanos , Redes Neurais de Computação , Bactérias , Viroses/diagnóstico , Viroses/genética , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA