Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 8(33): 18355-18362, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35541110

RESUMO

We have investigated lead adsorption on different forms of nanostructured carbon, namely multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) functionalized with different functional groups (hydroxyl, carboxyl, and amino groups). We found that the same functional group does not result in the same performance trends for different nanostructured carbons. Drastically different behavior was observed for the amino-group functionalization, where a significant improvement is observed for MWCNT, while worse performance compared to non-functionalized material is obtained for RGO. On the other hand, hydroxyl and carboxyl group functionalization improves the lead adsorption regardless of the form of carbon. The best performing RGO sample, namely carboxyl group functionalized one, exhibited maximum lead adsorption capacity of 298.49 mg g-1 which was significantly higher than that of the best performing MWCNT sample (amino-functionalized MWCNT, 58.547 mg g-1).

2.
Nano Lett ; 14(9): 5244-9, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25102289

RESUMO

The topological insulator/normal insulator (TI/NI) superlattices (SLs) with multiple Dirac channels are predicted to offer great opportunity to design novel materials and investigate new quantum phenomena. Here, we report first transport studies on the SLs composed of TI Bi2Se3 layers sandwiched by NI In2Se3 layers artificially grown by molecular beam epitaxy (MBE). The transport properties of two kinds of SL samples show convincing evidence that the transport dimensionality changes from three-dimensional (3D) to two-dimensional (2D) when decreasing the thickness of building block Bi2Se3 layers, corresponding to the crossover from coherent TI transport to separated TI channels. Our findings provide the possibility to realizing "3D surface states" in TI/NI SLs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA