Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Chemistry ; : e202402556, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051982

RESUMO

Despite the existence of three competing reactions for propargyloxyoxindoles, we report a chemoselectivity switch between enantioselective propargyl [2,3]-Wittig rearrangement and Conia-ene-type reactions, with suppression of the [1,2]-Wittig-type rearrangement. Using C1-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand and Ni(acac)2 as the Lewis acid, diverse 3-hydroxy 3-substituted oxindoles containing allenyl groups were obtained in up to 98% yield and 99% ee via asymmetric propargyl [2,3]-Wittig rearrangement. In the presence of AgOTf-Duanphos, chiral spiro dihydrofuran oxindoles were given in up to 98% yield and 91% ee through a Conia-ene-type reaction.

2.
Poult Sci ; 103(9): 104019, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38991384

RESUMO

Meat qualities of free-range chicken (Xuan-Zhou) (XZ-FRC) are closely associated with slaughter age and directly influence the economic benefits of supplier and consumer's preference. Understanding of the relationship between meat qualities and ages will be of prime important to explore a better slaughter age of XZ-FRC. In this study, the quality traits of breast and thigh muscles from XZ-FRCs at 9 to 14 wk were analyzed to establish a relatively reliable method for selecting a better slaughter age. The results showed that the effects of slaughter ages on color (CIE L*, a* and b* values), shear force, centrifugal loss, and flavor of XZ-FRCs were significant (P < 0.05). There were greater differences in meat qualities, whatever breast or thigh muscles, between same or different ages. Eleven feature indexes used for colligation evaluation of slaughter age were selected by combining the quality characteristics and data analysis. The score of colligation evaluation for XZ-FRCs at 12 wk was higher than that at 9 and 14 wk, suggesting that the 12 wk was an optimal slaughter age. This work would provide a reference method that helps the producers of livestock and poultry to select a better slaughter age.

3.
J Environ Manage ; 365: 121683, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963968

RESUMO

Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.


Assuntos
Amônia , Destilação , Águas Residuárias , Amônia/química , Destilação/métodos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Modelos Teóricos , Concentração de Íons de Hidrogênio , Membranas Artificiais
4.
J Agric Food Chem ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39084686

RESUMO

Intestinal stem cells (ISCs) are necessary to maintain intestinal renewal. Here, we found that the highland barley ß-glucan (HBG) alleviated pathological symptoms and promoted the proliferation of intestinal stem cells in colitis mice. Notably, metabolomics studies showed that docosahexaenoic acid (DHA) was significantly increased by the HBG treatment. DHA is a ligand for peroxisome proliferator-activated receptor α (PPARα), which can promote ISC proliferation. Expectedly, HBG facilitated the expression of intestinal PPARα and the proliferation of ISCs in colitis mice. Further experiments verified that DHA significantly facilitated the expression of PPARα and the proliferation of ISCs in intestinal organoids. Intriguingly, the effect of DHA on ISC proliferation was reversed by the PPARα inhibitor. Together, our data indicate that HBG might accelerate PPARα-mediated ISC proliferation through DHA. This provides new insights into the effective application of polysaccharides in maintaining intestinal homeostasis.

5.
Org Lett ; 26(30): 6390-6395, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39041664

RESUMO

An achiral counteranion-induced reversal of enantioselectivity in Ni(II)-catalyzed Friedel-Crafts alkylation/annulation of 2-naphthols with ß,γ-unsaturated α-keto esters was achieved. Using imidazolidine pyrroloimidazolone pyridine as the ligand and Ni(acac)2 as the Lewis acid, diverse naphthopyran derivatives were obtained in good yields (up to 94% yield) and high enantioselectivities (up to 99% ee). In the presence of Ni(OTf)2 as the Lewis acid, a series of chiral naphthopyran derivatives were obtained in good yields and with a controlled switch in stereoselectivity. DFT calculations reveal that the achiral counteranions regulate H-bonding interactions between counteranions with the N-H of the ligand and the O-H of 2-naphthol.

6.
BMC Microbiol ; 24(1): 237, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961326

RESUMO

OBJECTIVE: Bladder cancer(BCa) was a disease that seriously affects patients' quality of life and prognosis. To address this issue, many researches suggested that the gut microbiota modulated tumor response to treatment; however, this had not been well-characterized in bladder cancer. In this study, our objective was to determine whether the diversity and composition of the gut microbiota or the density of specific bacterial genera influence the prognosis of patients with bladder cancer. METHODS: We collected fecal samples from a total of 50 bladder cancer patients and 22 matched non-cancer individuals for 16S rDNA sequencing to investigate the distribution of Parabacteroides in these two groups. Further we conducted follow-up with cancer patients to access the impact of different genera of microorganisms on patients survival. We conducted a Fecal Microbiota Transplantation (FMT) and mono-colonization experiment with Parabacteroides distasonis to explore its potential enhancement of the efficacy of anti-PD-1 immunotherapy in MB49 tumor-bearing mice. Immunohistochemistry, transcriptomics and molecular experiment analyses were employed to uncover the underlying mechanisms. RESULTS: The 16S rDNA showed that abundance of the genus Parabacteroides was elevated in the non-cancer control group compared to bladder cancer group. The results of tumor growth curves showed that a combination therapy of P. distasonis and ICIs treatment significantly delayed tumor growth and increased the intratumoral densities of both CD4+T and CD8+T cells. The results of transcriptome analysis demonstrated that the pathways associated with antitumoral immune response were remarkably upregulated in the P. distasonis gavage group. CONCLUSION: P. distasonis delivery combined with α-PD-1 mAb could be a new strategy to enhance the effect of anti-PD-1 immunotherapy. This effect might be achieved by activating immune and antitumor related pathways.


Assuntos
Bacteroidetes , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/microbiologia , Animais , Humanos , Camundongos , Imunoterapia/métodos , Bacteroidetes/genética , Bacteroidetes/imunologia , Feminino , Masculino , RNA Ribossômico 16S/genética , Fezes/microbiologia , Pessoa de Meia-Idade , Idoso , Camundongos Endogâmicos C57BL
7.
J Agric Food Chem ; 72(31): 17328-17342, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39045647

RESUMO

Zanthoxyli radix is a popular tea among the elderly, and it is believed to have a positive effect on Alzheimer's disease. In this study, a highly effective three-step strategy was proposed for comprehensive analysis of the active components and biological functions of Zanthoxylum nitidum (ZN), including high-resolution LC-Q-TOF mass spectrometry (HRMS), multivariate statistical analysis for heterogeneity (MSAH), and experimental and virtual screening for bioactivity analysis (EVBA). A total of 117 compounds were identified from the root, stem, and leaf of ZN through HRMS. Bioactivity assays showed that the order of acetylcholinesterase (AChE) inhibitory activity from strong to weak was root > stem > leaf. Nitidine, chelerythrine, and sanguinarine were found to be the main differential components of root, stem, and leaf by OPLS-DA. The IC50 values of the three compounds are 0.81 ± 0.02, 0.14 ± 0.01, and 0.48 ± 0.01 µM respectively, indicating that they are potent and high-quality AChE inhibitors. Molecular docking showed that pi-pi T-shaped interactions and pi-lone pairs played important roles in AChE inhibition. This study not only explains the biological function of Zanthoxyli radix in alleviating Alzheimer's disease to some extent, but also lays the foundation for the development of stem and leaf of ZN.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Espectrometria de Massas , Simulação de Acoplamento Molecular , Folhas de Planta , Zanthoxylum , Zanthoxylum/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Caules de Planta/química , Cromatografia Líquida de Alta Pressão , Humanos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia
8.
Genes Dis ; 11(5): 101250, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022128

RESUMO

The clearance of apoptotic cell debris, containing professional phagocytosis and non-professional phagocytosis, is essential for maintaining the homeostasis of healthy tissues. Here, we discovered that endothelial cells could engulf apoptotic cell debris in atherosclerotic plaque. Single-cell RNA sequencing (RNA-seq) has revealed a unique endothelial cell subpopulation in atherosclerosis, which was strongly associated with vascular injury-related pathways. Moreover, integrated analysis of three vascular injury-related RNA-seq datasets showed that the expression of scavenger receptor class B type 1 (SR-B1) was up-regulated and specifically enriched in the phagocytosis pathway under vascular injury circumstances. Single-cell RNA-seq and bulk RNA-seq indicate that SR-B1 was highly expressed in a unique endothelial cell subpopulation of mouse aorta and strongly associated with the reorganization of cellular adherent junctions and cytoskeleton which were necessary for phagocytosis. Furthermore, SR-B1 was strongly required for endothelial cells to engulf apoptotic cell debris in atherosclerotic plaque of both mouse and human aorta. Overall, this study demonstrated that apoptotic cell debris could be engulfed by endothelial cells through SR-B1 and associated with the reorganization of cellular adherent junctions and cytoskeleton.

9.
Adv Sci (Weinh) ; 11(30): e2402380, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837633

RESUMO

Simultaneously achieving high-energy-density and high-power-density is a crucial yet challenging objective in the pursuit of commercialized power batteries. In this study, atomic layer deposition (ALD) is employed combined with a coordinated thermal treatment strategy to construct a densely packed, electron-ion dual conductor (EIC) protective coating on the surface of commercial LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material, further enhanced by gradient Al doping (Al@EIC-NCM523). The ultra-thin EIC effectively suppresses side reactions, thereby enhancing the stability of the cathode-electrolyte interphase (CEI) at high-voltages. The EIC's dual conduction capability provides a potent driving force for Li+ transport at the interface, promoting the formation of rapid ion deintercalation pathways within the Al@EIC-NCM523 bulk phase. Moreover, the strategic gradient doping of Al serves to anchor the atomic spacing of Ni and O within the structure of Al@EIC-NCM523, curbing irreversible phase transitions at high-voltages and preserving the integrity of its layered structure. Remarkably, Al@EIC-NCM523 displays an unprecedented rate capability (114.7 mAh g-1 at 20 C), and a sustained cycling performance (capacity retention of 74.72% after 800 cycles at 10 C) at 4.6 V. These findings demonstrate that the proposed EIC and doping strategy holds a significant promise for developing high-energy-density and high-power-density lithium-ion batteries (LIBs).

10.
Huan Jing Ke Xue ; 45(6): 3459-3467, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897766

RESUMO

Road transport is the primary source of greenhouse gas emissions in China's transportation field. As an important means to achieve the "double carbon" goal in the transportation field, the new energy automobile industry will face a large number of power battery scrapping in the future. In order to quantitatively assess the carbon emission reduction benefits generated by the spent ternary lithium-ion battery waste recycling industry, the carbon footprint accounting model of spent ternary lithium-ion battery waste recycling and utilization was constructed from the life cycle perspective. By optimizing the power structure and transportation structure, the carbon emission reduction potential of spent ternary lithium-ion battery waste recycling was predicted and evaluated. In addition, the uncertainty analysis was conducted using the propagation of uncertainty equation to ensure the reliability and effectiveness of the carbon footprint results. The results showed that the current carbon footprint of Chinese enterprises using wet technology to recover 1 kg waste lithium batteries was -2 760.90 g (directional recycling process) and -3 752.78 g (recycling process), and the uncertainty of the carbon footprint was 16 % (directional recycling process) and 15 % (recycling process), respectively. From the analysis of carbon emission contribution, the regenerated product stage was the primary source of carbon reduction in the wet recycling and utilization of waste ternary lithium batteries, whereas the battery acquisition, disassembly, and end treatment stages were the main sources of carbon increase. Compared to optimizing the transportation structure, optimizing the power structure could effectively achieve greater carbon emission reduction potential. Under the collaborative optimization scenario, compared to that before optimization, 14 %-19 % carbon emission reduction could be achieved. Compared with native products, the directional circulation process and recycling process could achieve 9 % and 11 % emission reduction potential, respectively.

11.
World J Clin Cases ; 12(16): 2869-2875, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38899294

RESUMO

BACKGROUND: Vascular malformations (VMs) arise as a result of errors in the process of angiogenesis and are usually present at birth, but may not become apparent until after birth. However, giant VMs of the head and face are uncommon, with few reported cases, and the prognosis for their surgical intervention is unclear. CASE SUMMARY: A 12-year-old girl was admitted to the hospital with findings of an enlarged right temporal scalp. After admission, computed tomography (CT) angiography of cerebral ateries showed a right occlusal gap and a right temporal artery venous malformation. Furthermore, cerebral angiography showed a right temporal lobe VM with multiple vessels supplying blood. The patient underwent surgery to remove the malformed vessels and the eroded skull. Two hours after the surgery, the patient's right pupil was dilated, and an urgent CT scan of the skull showed a right subdural haematoma under the incision, which was urgently removed by a second operation. After surgery, we gave continuous antibiotic anti-infection treatment, and the patient recovered well and was discharged two weeks later. CONCLUSION: Surgical removal of giant haemangiomas is risky and adequate preoperative (including interventional embolisation) and intraoperative preparations should be made.

12.
Colloids Surf B Biointerfaces ; 240: 113998, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823340

RESUMO

Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.


Assuntos
Antibacterianos , Escherichia coli , Nanocompostos , Staphylococcus aureus , Cicatrização , Nanocompostos/química , Cicatrização/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Fotoquimioterapia , Testes de Sensibilidade Microbiana , Camundongos , Esterilização/métodos , Ferrocianetos/química , Ferrocianetos/farmacologia , Tamanho da Partícula , Zinco/química , Zinco/farmacologia , Terapia Fototérmica , Propriedades de Superfície , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Grafite
13.
Phys Rev Lett ; 132(21): 216903, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856288

RESUMO

Controlling interlayer excitons in Van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe_{2}/hBN/MoSe_{2} heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ∼180 meV through the Stark effect, and exhibit a sizable binding energy of ∼81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding 10 µm, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers.

15.
Angew Chem Int Ed Engl ; 63(32): e202407898, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739536

RESUMO

The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28 % higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33 % after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials, setting a new standard for the development of high-energy-density and long-lasting electrode materials.

16.
Nat Chem ; 16(8): 1301-1311, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38719944

RESUMO

Chiral sulfur pharmacophores are crucial for drug discovery in bioscience and medicinal chemistry. While the catalytic asymmetric synthesis of sulfoxides and sulfinate esters with stereogenic-at-sulfur(IV) centres is well developed, the synthesis of chiral sulfinamides remains challenging, which has primarily been attributed to the high nucleophilicity and competing reactions of amines. In this study, we have developed an efficient methodology for the catalytic asymmetric synthesis of chiral sulfinamides and sulfinate esters by the sulfinylation of diverse nucleophiles, including aromatic amines and alcohols, using our bifunctional chiral 4-arylpyridine N-oxides as catalysts. The remarkable results are a testament to the efficiency, versatility and broad applicability of the developed synthetic approach, serving as a valuable tool for the synthesis of sulfur pharmacophores. Mechanistic experiments and density functional theory calculations revealed that the initiation and stereocontrol of this reaction are induced by an acyl transfer catalyst. Our research provides an efficient approach for the construction of optically pure sulfur(IV) centres.

17.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38757304

RESUMO

Gut microbiota dysfunction is a key factor affecting chronic kidney disease (CKD) susceptibility. Puerariae lobatae Radix (PLR), a traditional Chinese medicine and food homologous herb, is known to promote the gut microbiota homeostasis; however, its role in renoprotection remains unknown. The present study aimed to investigate the efficacy and potential mechanism of PLR to alleviate CKD. An 8­week 2% NaCl­feeding murine model was applied to induce CKD and evaluate the therapeutic effect of PLR supplementary. After gavage for 8 weeks, The medium and high doses of PLR significantly alleviated CKD­associated creatinine, urine protein increasement and nephritic histopathological injury. Moreover, PLR protected kidney from fibrosis by reducing inflammatory response and downregulating the canonical Wnt/ß­catenin pathway. Furthermore, PLR rescued the gut microbiota dysbiosis and protected against high salt­induced gut barrier dysfunction. Enrichment of Akkermansia and Bifidobacterium was found after PLR intervention, the relative abundances of which were in positive correlation with normal maintenance of renal histology and function. Next, fecal microbiota transplantation experiment verified that the positive effect of PLR on CKD was, at least partially, exerted through gut microbiota reestablishment and downregulation of the Wnt/ß­catenin pathway. The present study provided evidence for a new function of PLR on kidney protection and put forward a potential therapeutic strategy target for CKD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Pueraria , Insuficiência Renal Crônica , Via de Sinalização Wnt , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Pueraria/química , Modelos Animais de Doenças , Disbiose/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal
18.
MedComm (2020) ; 5(6): e547, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764726

RESUMO

Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.

19.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731557

RESUMO

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Assuntos
Antioxidantes , Fenóis , Extratos Vegetais , Solventes , Solventes/química , Fenóis/química , Fenóis/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Química Verde , Simulação de Dinâmica Molecular , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação
20.
J Org Chem ; 89(11): 8041-8054, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38757188

RESUMO

A base-assisted dearomative [2 + 1] spiroannulation of p/o-bromophenols with activated olefins (methylenemalonates) to construct various cyclopropyl spirocyclohexadienone skeletons is reported. Furthermore, several other halophenols (X = Cl, I) were also tolerated in this process. Control experiments reveal a dearomative Michael addition of phenols at their halogenated positions to methylenemalonates, followed by intramolecular radical-based SRN1 dehalogenative cyclopropanation. However, according to the density functional theory (DFT) calculations, an SN2 dehalogenative cyclopropanation with the same low activation energy barrier should not be excluded. The utility of this method is showcased by gram-scale syntheses and transformations of the dearomatized products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA