Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(9): 1183-1189, 2017 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-28951359

RESUMO

OBJECTIVE: To investigate the role of microtubule-actin crosslinking factor 1 (MACF1) in the response of glioma cells to temozolomide (TMZ). METHODS: TMZ was applied to a human gliomablastoma cell line (U87) and changes in the protein expression and cellular localization were determined with Western blot, RT-PCR, and immunofluorescence. The responses of the cells with MACF1 expression knockdown by RNA interference to TMZ were assessed. TMZ-induced effects on MACF1 expression were also assessed by immunohistochemistry in a nude mouse model bearing human glioblastoma xenografts. RESULTS: TMZ resulted in significantly increased MACF1 expression (by about 2 folds) and changes in its localization in the gliomablastoma cells both in vitro and in vivo (P<0.01). Knockdown of MACF1 reduced the proliferation (by 45%) of human glioma cell lines treated with TMZ (P<0.01). TMZ-induced changes in MACF1 expression was accompanied by cytoskeletal rearrangement. CONCLUSION: MACF1 may be a potential therapeutic target for glioblastoma.

2.
J Neurol Sci ; 367: 101-6, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27423571

RESUMO

Glioblastoma is one of the most lethal cancers in central nervous system, and some individual cells that cannot be isolated for surgical resection and also show treatment-resistance induce poor prognosis. Hence, in order to research these cells, we treated temozolomide (TMZ)-sensitive U87MG cells with 400µM TMZ in culture media for over 6months and established TMZ-resistant cell line designated as U87/TR. We detected the MGMT status through pyrosequencing and western blotting, and we also assessed the proliferation, migration, EMT-like changes and possible activated signaling pathways in U87/TR cells. Our results demonstrated that U87/TR was MGMT negative, which indicated that MGMT made no contribution for TMZ-resistance of U87/TR. And U87/TR cells displayed cell cycle arrest, higher capacity for migration and EMT-like changes including both phenotype and characteristic proteins. We also revealed that both ß-catenin and the phosphorylation level of Akt and PRAS40 were increased in U87/TR, while we did not observe the phosphorylation of mTOR in U87/TR. It indicated that activation of Akt and Wnt/ß-catenin pathways may be response for the chemo-resistance and increased invasion of U87/TR cells, and the phosphorylation of PRAS40 and inactivated mTOR may be related to cell cycle arrest in U87/TR cells.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Glioma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/farmacologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Fosforilação , Serina-Treonina Quinases TOR/metabolismo , Temozolomida , Proteínas Supressoras de Tumor/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA