RESUMO
OBJECTIVE: To investigate the role of microtubule-actin crosslinking factor 1 (MACF1) in the response of glioma cells to temozolomide (TMZ). METHODS: TMZ was applied to a human gliomablastoma cell line (U87) and changes in the protein expression and cellular localization were determined with Western blot, RT-PCR, and immunofluorescence. The responses of the cells with MACF1 expression knockdown by RNA interference to TMZ were assessed. TMZ-induced effects on MACF1 expression were also assessed by immunohistochemistry in a nude mouse model bearing human glioblastoma xenografts. RESULTS: TMZ resulted in significantly increased MACF1 expression (by about 2 folds) and changes in its localization in the gliomablastoma cells both in vitro and in vivo (P<0.01). Knockdown of MACF1 reduced the proliferation (by 45%) of human glioma cell lines treated with TMZ (P<0.01). TMZ-induced changes in MACF1 expression was accompanied by cytoskeletal rearrangement. CONCLUSION: MACF1 may be a potential therapeutic target for glioblastoma.
RESUMO
Glioblastoma is one of the most lethal cancers in central nervous system, and some individual cells that cannot be isolated for surgical resection and also show treatment-resistance induce poor prognosis. Hence, in order to research these cells, we treated temozolomide (TMZ)-sensitive U87MG cells with 400µM TMZ in culture media for over 6months and established TMZ-resistant cell line designated as U87/TR. We detected the MGMT status through pyrosequencing and western blotting, and we also assessed the proliferation, migration, EMT-like changes and possible activated signaling pathways in U87/TR cells. Our results demonstrated that U87/TR was MGMT negative, which indicated that MGMT made no contribution for TMZ-resistance of U87/TR. And U87/TR cells displayed cell cycle arrest, higher capacity for migration and EMT-like changes including both phenotype and characteristic proteins. We also revealed that both ß-catenin and the phosphorylation level of Akt and PRAS40 were increased in U87/TR, while we did not observe the phosphorylation of mTOR in U87/TR. It indicated that activation of Akt and Wnt/ß-catenin pathways may be response for the chemo-resistance and increased invasion of U87/TR cells, and the phosphorylation of PRAS40 and inactivated mTOR may be related to cell cycle arrest in U87/TR cells.