Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405092, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591230

RESUMO

Zeolite synthesis under acidic conditions has always presented a challenge. In this study, we successfully prepared series of ZSM-5 zeolite nanosheets (Z-5-SCA-X) over a broad pH range (4 to 13) without the need for additional supplements. This achievement was realized through aggregation crystallization of ZSM-5 zeolite subcrystal (Z-5-SC) with highly short-range ordering and ultrasmall size extracted from the synthetic system of ZSM-5 zeolite. Furthermore, the crystallization behavior of Z-5-SC was investigated, revealing its non-classical crystallization process under mildly alkaline and acidic conditions (pH<10), and the combination of classical and non-classical processes under strongly alkaline conditions (pH≥10). What's particularly intriguing is that, the silanol nest content in the resultant Z-5-SCA-X samples appears to be dependent on the pH values during the Z-5-SC crystallization process rather than its crystallinity. Finally, the results of the furfuryl alcohol etherification reaction demonstrate that reducing the concentration of silanol nests significantly enhances the catalytic performance of the Z-5-SCA-X zeolite. The ability to synthesize zeolite in neutral and acidic environments without the additional mineralizing agents not only broadens the current view of traditional zeolite synthesis but also provides a new approach to control the silanol nest content of zeolite catalysts.

2.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38169100

RESUMO

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

3.
Nat Mater ; 22(6): 786-792, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37217702

RESUMO

Seeded growth of crystallizable block copolymers and π-stacking molecular amphiphiles in solution using living crystallization-driven self-assembly is an emerging route to fabricate uniform one-dimensional and two-dimensional core-shell micellar nanoparticles of controlled size with a range of potential applications. Although experimental evidence indicates that the crystalline core of these nanomaterials is highly ordered, a direct observation of their crystal lattice has not been successful. Here we report the high-resolution cryo-transmission electron microscopy studies of vitrified solutions of nanofibres made from a crystalline core of poly(ferrocenyldimethylsilane) (PFS) and a corona of polysiloxane grafted with 4-vinylpyridine groups. These studies show that poly(ferrocenyldimethylsilane) chains pack in an 8-nm-diameter core lattice with two-dimensional pseudo-hexagonal symmetry that is coated by a 27 nm 4-vinylpyridine corona with a 3.5 nm distance between each 4-vinylpyridine strand. We combine this structural information with a molecular modelling analysis to propose a detailed molecular model for solvated poly(ferrocenyldimethylsilane)-b-4-vinylpyridine nanofibres.

4.
Front Cell Dev Biol ; 10: 1075810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589750

RESUMO

We present the use of conductive spray polymer ionization mass spectrometry (CPSI-MS) combined with machine learning (ML) to rapidly gain the metabolic fingerprint from 1 µl liquid extraction from the biopsied tissue of triple-negative breast cancer (TNBC) in China. The 76 discriminative metabolite markers are verified at the primary carcinoma site and can also be successfully tracked in the serum. The Lasso classifier featured with 15- and 22-metabolites detected by CPSI-MS achieve a sensitivity of 88.8% for rapid serum screening and a specificity of 91.1% for tissue diagnosis, respectively. Finally, the expression levels of their corresponding upstream enzymes and transporters have been initially confirmed. In general, CPSI-MS/ML serves as a cost-effective tool for the rapid screening, diagnosis, and precise characterization for the TNBC metabolism reprogramming in the clinical practice.

5.
IET Nanobiotechnol ; 14(4): 325-330, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32463023

RESUMO

Metallic nanoparticles can be synthesised in living plants, which provide a friendly approach. In this work, the authors aimed to study the synthesis of silver nanoparticles (AgNPs) in Arabidopsis and the two-dimensional (2D) distribution of Ag and other elements (Ca, P, S, Mg, and CI) in the Arabidopsis plant tissues. The concentrations of Ag in the plant tissues were determined by inductively coupled plasma-atomic emission spectrometer, showing that the majority of Ag was retained in the roots. Transmission electron micrographs showed the morphology of AgNPs and the location in plant cells. The distributions of Cl and Ag were consistent in plant tissues by 2D proton-induced X-ray emission. In conclusion, this is the first report of the AgNP synthesis in Arabidopsis living plants and its 2D distribution of important elements, which provide a new clue for further research.


Assuntos
Arabidopsis/metabolismo , Nanopartículas Metálicas/química , Raízes de Plantas/metabolismo , Prata/metabolismo , Arabidopsis/química , Compostos Fitoquímicos , Raízes de Plantas/química , Prata/química , Distribuição Tecidual
6.
Nanoscale ; 12(8): 5075-5083, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32068223

RESUMO

Fabricating lanthanide doped up-conversion luminescence based nanocomposites has drawn increasing attention in nanoscience and nanotechnology. Although challenging in precise synthesis, structure manipulation and interfacial engineering, fabricating dendritic mesoporous silica coated up-conversion nanoparticles (UCNP@dMSNs) with a tunable pore size is of great importance for the functionalization and application of UCNPs. Herein, we report a strategy to prepare uniform monodisperse UCNP@dMSNs with a core-shell structure. The silica shell has tunable center-radial and dendritic mesoporous channels. The synthesis was carried out in the heterogeneous oil-water microemulsion phase of the Winsor III system reaction system, which allows silica to be deposited directly on hydrophobic UCNPs through the self-anchoring of micelle complexes on the oleic acid ligand. The average pore size of UCNP@dMSNs could be tailored from ∼10 to ∼35 nm according to the varied amounts of co-solvent in the mixture. The microemulsion approach could also be used to prepare hierarchical UCNP@dMSNs with a multi-generational mesostructure. The resultant UCNP@dMSNs exhibit the unique advantage of loading "guest" nanoparticles in a self-absorption manner. We proved that Cu1.8S NPs (∼10 nm), Au NPs (∼10 nm) and Fe3O4 NPs (∼25 nm) could be incorporated in UCNP@dMSNs, which in turn validates the high adsorption capacity of UCNP@dMSNs.

7.
J Am Chem Soc ; 141(28): 11322-11327, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265260

RESUMO

With tunable pore size and rich active metal centers, metal-organic frameworks (MOFs) have been regarded as the one of the promising materials for catalysis. Prospectively, employing MOFs in electrochemistry would notably broaden the scope of electrocatalysis. However, this application is largely hindered by MOFs' conventionally poor electrical conductivity. Integrating MOFs without compromising their crystalline superiority holds a grand challenge to unveil their pristine electrocatalytic properties. In this work, we introduce an epitaxial growth strategy to accomplish the efficient integration of the insulating MOFs into electrochemistry. Particularly, with pristine-graphene-templated growth, the two-dimensional (2D) single-crystal MOF possesses a large lateral size of ∼23 µm and high aspect ratio up to ∼1500 and exhibits a significant electrochemical enhancement, with a charge transfer resistance of ∼200 ohm and a 30 mA cm-2 current density at only 0.53 V versus a reversible hydrogen electrode. The epitaxial strategy could be further applied to other 2D substrates, such as MoS2. This MOF/graphene 2D architecture sheds light on integrating insulating MOFs into electrochemical applications.

8.
Chem Sci ; 9(33): 6803-6812, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30310613

RESUMO

Phase transformation of electrode materials widely occurs in electrocatalytic reactions. Metal oxides are promising electrocatalysts for the oxygen evolution reaction (OER); their phase transformation is a key step for the multi-electron OER, and requires extra overpotential. However, little attention has been paid to accelerating and enhancing the phase transformation. Here, we report for the first time that single-atom Pt incorporated into the bulk crystalline phase of porous NiO nanocubes (0.5 wt% Pt/NiO) can greatly promote the active phase (NiOOH) evolution. The Pt doping was achieved by a scalable nanocasting approach using SiO2 as the hard template. In comparison with Pt/NiO samples with PtO2 nanoparticles segregated at the NiO surface (1 wt% Pt), as well as atomistic Pt atoms solely bound at the surface by atomic layer deposition, the bulk Pt doping shows the strongest power in facilitating active phase transformation, which leads to improved OER activity with reduced overpotential and Tafel slope. Experiential data revealed that the charge-transfer from Pt to Ni through O leads to a local weaker Ni-O bond. First principles calculations confirmed that rather than acting as an active site for the OER, monatomic Pt effectively increases the phase transformation rate by reducing the migration barrier of nearby Ni atoms. Our discoveries reveal the relationships of the heteroatom doped structure and phase transformation behavior during the electrochemical process and offer a new route for designing high-performance electrocatalysts.

9.
J Am Chem Soc ; 140(44): 15038-15047, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30359001

RESUMO

Self-assembled binary nanocrystal superlattices (BNSLs) represent an important class of solid-state materials with potentially designed properties. In pursuit of widening the range of applications for binary superlattice materials, it is desirable to develop scalable assembly methods that enable high-quality BNSLs with tailored compositions, structures, and morphologies. Here, we report the gram-scale assembly of crystalline binary nanocrystal superparticles with high phase purity through an emulsion-based process. The structure of the resulting BNSL colloids can be tuned in a wide range (AB13, AlB2, MgZn2, NaCl, and CaCu5) by varying the size and/or number ratios of the two nanocrystal components. Access to large-scale, phase-pure BNSL colloids offers vast opportunities for investigating their physiochemical properties, as exemplified by AB13-type CoFe2O4-Fe3O4 binary superparticles. Our results show that CoFe2O4-Fe3O4 binary superparticles not only display enhanced magnetic coupling but also exhibit superior lithium-storage properties. The nonclosed-packed NC packing arrangements of AB13-type binary superparticles are found to play a key role in facilitating lithiation/delithiation kinetics and maintaining structural integrity during repeated cycling. Our work establishes the scalable assembly of high-quality BNSL colloids, which is beneficial for accelerating the exploration of multicomponent nanocrystal superlattices toward various applications.

10.
ACS Appl Mater Interfaces ; 10(28): 23439-23443, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29956535

RESUMO

We devised iron-based catalysts with honeycomb-structured graphene (HSG) as the support and potassium as the promoter for CO2 direct hydrogenation to light olefins (CO2-FTO). Over the optimal FeK1.5/HSG catalyst, the iron time yield of light olefins amounted to 73 µmolCO2 gFe-1 s-1 with high selectivity of 59%. No obvious deactivation occurred within 120 h on stream. The excellent catalytic performance is attributed to the confinement effect of the porous HSG on the sintering of the active sites and the promotion effect of potassium on the activation of inert CO2 and the formation of iron carbide active for CO2-FTO.

11.
Nanoscale ; 10(6): 2887-2893, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29367976

RESUMO

Photosynthesis in plants occurs at structures which form by self-assembly under ambient conditions, while catalysts used for artificial photosynthesis normally need special conditions like high pressure or temperature. Herein, a facile and cost effective way for the synthesis of a highly complex and efficient oxygen evolution reaction (OER) catalyst, formed solely by self-assembly in solution, is presented. Without the need for any instrumentation except for a glass beaker, highly active nickel-iron-copper multi-shell nanotube arrays are produced by immersion of a copper plate in three different solutions. Cu(OH)2 nanowires are first self-grown on a copper substrate in a basic solution and subsequently converted to novel iron-copper hydroxide nanotubes by immersion in an Fe3+ solution by a sacrificial template-accelerated hydrolysis mechanism. Finally, an additional layer of nickel nanosheets is added by treating in a nickel chemical bath. The resulting electrode shows a current density as high as 100 mA cm-2 at an overpotential of 320 mV with a Tafel slope of 32 mV dec-1, while also exhibiting long time stability. The use of inexpensive first-row transition metals, simple preparation methods with no energy consumption, the unique hierarchical structure of the nanosheet covered nanotubes, and the high catalytic performance are remarkable, and this study may therefore lead to more convenient and competitive routes for water splitting.

12.
ACS Appl Mater Interfaces ; 9(32): 26674-26683, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28726368

RESUMO

Nanomedicine has attracted substantial attention for the accurate diagnosis or treatment of carcinoma in recent years. Nd3+-doped lanthanide nanophosphor-based near-infrared-II (NIR-II) optical imaging is widely used for deep penetration tissue imaging while X-ray computed tomography (CT) is well-suited for in vivo imaging. Polymer-coated lanthanide nanophosphors are increasingly used in both diagnostics and therapies for tumor in vivo. However, the biocompatibility of nanocomposites and the efficiency of tumor ablation should be taken into consideration when constructing a nanotheranostic probe. In this article, we have fabricated polydopamine (PDA)-coated NaYF4:Nd3+@NaLuF4 nanocomposites using the reverse microemulsion approach. The thickness of the PDA shell can be precisely modulated from ∼1.5 to ∼18 nm, endowing the obtained NaYF4:Nd3+@NaLuF4@PDA with an excellent colloidal stability and considerable biocompatibility. The photothermal conversion efficiency of the resultant nanocomposites was optimized and maximized by the increase of the PDA shell thickness. Because of the remarkable photothermal conversion efficiency, the mice xenograft tumors were completely eradicated after NIR irradiation. Given the considerable photoluminescence and X-ray attenuation efficiency, the performance of NaYF4:Nd3+@NaLuF4@PDA for NIR-II optical imaging and X-ray CT dual imaging of the tumor in vivo was evaluated. All of the results above highlight the great potential of PDA-based NaYF4:Nd3+@NaLuF4 nanocomposites as a novel multifunctional nanotheranostic agent.


Assuntos
Nanopartículas Metálicas , Animais , Bivalves , Indóis , Elementos da Série dos Lantanídeos , Camundongos , Processos Fotoquímicos , Polímeros , Tomografia Computadorizada por Raios X
13.
Angew Chem Int Ed Engl ; 56(39): 11764-11768, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28727219

RESUMO

Screw dislocation structures in crystals are an origin of symmetry breaking in a wide range of dense-phase crystals. Preparation of such analogous structures in framework-phase crystals is of great importance in zeolites but is still a challenge. On the basis of crystal-structure solving and model building, it was found that the two specific intergrowths in MTW zeolite produce this complex fractal and spiral structure. With the structurally determined parameters (spiral pitch h, screw angle θ, and spatial angle ψ) of Burgers circuit, the screw dislocation structure can be constructed by two different dimensional intergrowth sections. Thus the reported complexity of various dimensions in diverse crystals can be unified.

14.
Nano Lett ; 17(3): 2003-2009, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28128964

RESUMO

Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe3O4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

15.
Front Chem ; 5: 117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29322042

RESUMO

Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with their 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites arising from the thin wall thickness and high surface area.

16.
Nat Commun ; 7: 11580, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161853

RESUMO

Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3](2+)-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3](2+) units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

17.
J Am Chem Soc ; 137(35): 11532-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26289453

RESUMO

The solid phase transition of TiO2, in particular anatase to rutile, has been extensively studied in the past 30 years. To seek the nucleation site at the beginning of phase transition is highly challenging, which asks for new theoretical techniques with high spatial and temporal resolution. This work reports the first evidence on the atomic structure of the nucleation sites in the TiO2 anatase-to-rutile phase transition. Novel automated theoretical methods, namely stochastic surface walking based pathway sampling methods, are utilized to resolve the lowest energy pathways at the initial stage of phase transition. We show that among common anatase surfaces, only the (112) ridged surface provides the nucleation site for phase transition, which can lead to the formation of both TiO2-II and brookite thin slabs. The TiO2-II phase is kinetically preferred product; the propagation into the subsurface is still hindered by high barriers that is the origin for the slow kinetics of nuclei formation. The rutile nuclei are thus not rutile phase but nascent metastable TiO2-II phase in an anatase matrix. The phase transition kinetics is found to be sensitive to the compressive strain and the crystallographic directions. The results rationalize the size and morphology dependence of the anisotropic phase transition kinetics of anatase particles and could facilitate the rational design of material via controlled solid phase transition.

18.
Nat Commun ; 5: 5574, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25470406

RESUMO

Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. Here we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating the solvent, the periodicity of the framework is maintained in porous microcrystals. As a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.

19.
Chem Commun (Camb) ; 50(65): 9138-40, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24990297

RESUMO

A novel bifunctional catalyst based on partially reduced iridium oxide supported on TiO2 was found to be exceedingly efficient for the organic-solvent-free synthesis of dimethylformamide from CO2, H2 and dimethylamine.

20.
J Phys Chem Lett ; 5(18): 3162-8, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26276327

RESUMO

Bicrystalline materials have wide applications from silicon chips to photocatalysis, but the controlled synthesis of nanocrytals with ordered phase junction has been challenging, in particular via chemical synesthetic routes. Here, we propose a general strategy to design biphase crystals formed via partial solid-to-solid phase transition with perfect phase junction, e.g., being atomically sharp and built of two particular sets of epitaxially joined planes of the two component phases, and present such an example by designing, synthesizing, and characterizing the interface of two TiO2 phases, namely, TiO2-B/anatase biphase nanocrystals that are obtained conveniently via one-pot chemical synthesis. Our design strategy classifies the common solid-to-solid phase transition into three types that are distinguishable by using the newly developed stochastic surface walking (SSW) method for unbiased pathway sampling. Only Type-I crystal is predicted to possess perfect phase junction, where the phase transition involves one and only one propagation direction featuring single pathway phase transition containing only one elementary kinetic step. The method is applicable for the understanding and the design of heterophase materials via partial phase transition in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA