Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 76(6): e13008, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39300782

RESUMO

Diabetic retinopathy (DR) is characterized as a microvascular disease. Nonproliferative diabetic retinopathy (NPDR) presents with alterations in retinal blood flow and vascular permeability, thickening of the basement membrane, loss of pericytes, and formation of acellular capillaries. Endothelial-mesenchymal transition (EndMT) of retinal microvessels may play a critical role in advancing NPDR. Melatonin, a hormone primarily secreted by the pineal gland, is a promising therapeutic for DR. This study explored the EndMT in retinal microvessels of NPDR and its related mechanisms. The effect of melatonin on the retina of diabetic rats was evaluated by electroretinogram (ERG) and histopathologic slide staining. Furthermore, the effect of melatonin on human retinal microvascular endothelial cells (HRMECs) was detected by EdU incorporation assay, scratch assay, transwell assay, and tube formation test. Techniques such as RNA-sequencing, overexpression or knockdown of target genes, extraction of cytoplasmic and nuclear protein, co-immunoprecipitation (co-IP), and multiplex immunofluorescence facilitated the exploration of the mechanisms involved. Our findings reveal, for the first time, that melatonin attenuates diabetic retinopathy by regulating EndMT of retinal vascular endothelial cells via inhibiting the HDAC7/FOXO1/ZEB1 axis. Collectively, these results suggest that melatonin holds potential as a therapeutic strategy to reduce retinal vascular damage and protect vision in NPDR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Células Endoteliais , Histona Desacetilases , Melatonina , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Melatonina/farmacologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Animais , Ratos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Histona Desacetilases/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino , Proteína Forkhead Box O1/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Ratos Sprague-Dawley , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Transição Endotélio-Mesênquima
2.
J Transl Med ; 22(1): 298, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520016

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is the foremost cause of vision loss among the global working-age population, and statins are among the most frequently prescribed drugs for lipid management in patients with DR. The exact relationship between statins and DR has not been determined. This study sought to validate the causal association between statins usage and diabetic retinopathy. METHODS: The summary-data-based Mendelian randomization (SMR) method and inverse-variance-weighted Mendelian randomization (IVW-MR) were used to identify the causal relationship between statins and DR via the use of expression quantitative trait loci (eQTL) data for 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) (31,684 blood samples), low density lipoprotein cholesterol-related GWAS data (sample size: 440,546), and DR-related GWAS data (14,584 cases and 176,010 controls). Additionally, a cross-sectional observational study based on the data from the National Health and Nutrition Examination Survey (NHANES) was conducted to supplement the association between DR and statins (sample size: 106,911). The odds ratios (ORs) with corresponding 95% confidence intervals (CIs) was employed to evaluate the results. RESULTS: Based on the results of the MR analysis, HMGCR inhibitors were causally connected with a noticeably greater incidence of DR (IVW: OR = 0.54, 95% CI [0.42, 0.69], p = 0.000002; SMR: OR = 0.66, 95% CI [0.52, 0.84], p = 0.00073). Subgroup analysis revealed that the results were not affected by the severity of DR. The sensitivity analysis revealed the stability and reliability of the MR analysis results. The results from the cross-sectional study based on NHANES also support the association between not taking statins and a decreased risk of DR (OR = 0.54, 95% CI [0.37, 0.79], p = 0.001). CONCLUSIONS: This study revealed that a significant increase in DR risk was causally related to statins use, providing novel insights into the role of statins in DR. However, further investigations are needed to verify these findings.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Estudos Transversais , Inquéritos Nutricionais , Retinopatia Diabética/genética , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Fatores de Risco , Estudo de Associação Genômica Ampla
3.
Int J Ophthalmol ; 16(8): 1210-1217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602334

RESUMO

AIM: To investigate the expression and effect of histone deacetylase 7 (HDAC7) in human retinal microvascular endothelial cells (HRMECs) under high glucose condition and related mechanism, and the expression of HDAC7 in the retinal tissue in diabetic rats. METHODS: The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot. LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities. Cell count kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, scratch test, Transwell test and tube formation assay were used to examine the ability of cell proliferation, migration, and angiogenesis. Finally, a preliminary exploration of its mechanism was performed by Western blot. RESULTS: The expression of HDAC7 was both up-regulated in retinal tissues of diabetic rats and high glucose-treated HRMECs. Down-regulation of HDAC7 expression significantly reduced the ability of proliferation, migration, and tube formation, and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs. CONCLUSION: High glucose can up-regulate the expression of HDAC7 in HRMECs. Down-regulation of HDAC7 can inhibit HRMECs activities. HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA