Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 86(3): 1575-1588, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36697746

RESUMO

Syndiniales is a diverse parasitic group, increasingly gaining attention owing to its high taxonomic diversity in marine ecosystems and inhibitory effects on the dinoflagellate blooms. However, their seasonal dynamics, host interactions, and mechanisms of community assembly are largely unknown, particularly in eutrophic waters. Here, using 18S rRNA gene amplicon sequencing, we intended to elucidate the interactions between Syndiniales and microeukaryotes, as well as community assembly processes in a eutrophic bay. The results showed that Syndiniales group II was dominating throughout the year, with substantially higher abundance in the winter and spring, whereas Syndiniales group I was more abundant in the summer and autumn. Temperature and Dinoflagellata were the most important abiotic and biotic factors driving variations of the Syndiniales community, respectively. The assembly processes of microeukaryotes and Syndiniales were completely different, with the former being controlled by a balance between homogeneous selection and drift and the latter being solely governed by drift. Network analysis revealed that Syndiniales group II had the largest number of interactions with microeukaryotes, and they primarily associated with Dinoflagellata in the winter, while interactions with Chlorophyta and Bacillariophyta increased dramatically in summer and autumn. These findings provide significant insights in understanding the interactions and assembly processes of Syndiniales throughout the year, which is critical in revealing the roles of single-celled parasites in driving protist dynamics in eutrophic waters.


Assuntos
Diatomáceas , Dinoflagellida , Ecossistema , Baías , Dinoflagellida/genética , Diatomáceas/genética , RNA Ribossômico 18S/genética , Estações do Ano
2.
Microbiol Spectr ; 10(3): e0148122, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638815

RESUMO

Eutrophication occurring in coastal bays is prominent in impacting local ecosystem structure and functioning. To understand how coastal bay ecosystem function responds to eutrophication, comprehending the ecological processes associated with microbial community assembly is critical. However, quantifying the contribution of ecological processes to the assembly of prokaryotic communities is still limited in eutrophic waters. Moreover, the influence of these ecological processes on microbial interactions is poorly understood. Here, we examined the assembly processes and co-occurrence patterns of prokaryotic communities in a eutrophic bay using 156 surface seawater samples collected over 12 months. The variation of prokaryotic community compositions (PCCs) could be mainly explained by environmental factors, of which temperature was the most important. Under high environmental heterogeneity conditions in low-temperature seasons, heterogeneous selection was the major assembly process, resulting in high ß-diversity and more tightly connected co-occurrence networks. When environmental heterogeneity decreased in high-temperature seasons, drift took over, leading to decline in ß-diversity and network associations. Microeukaryotes were found to be important biological factors affecting PCCs. Our results first disentangled the contribution of drift and microbial interactions to the large unexplained variation of prokaryotic communities in eutrophic waters. Furthermore, a new conceptual model linking microbial interactions to ecological processes was proposed under different environmental heterogeneity. Overall, our study sheds new light on the relationship between assembly processes and co-occurrence of prokaryotic communities in eutrophic waters. IMPORTANCE A growing number of studies have examined roles of microbial community assembly in modulating community composition. However, the relationships between community assembly and microbial interactions are not fully understood and rarely tested, especially in eutrophic waters. In this study, we built a conceptual model that links seasonal microbial interactions to ecological processes, which has not been reported before. The model showed that heterogeneous selection plays an important role in driving community assembly during low-temperature seasons, resulting in higher ß-diversity and more tightly connected networks. In contrast, drift became a dominant force during high-temperature seasons, leading to declines in the ß-diversity and network associations. This model could function as a new framework to predict how prokaryotic communities respond to intensified eutrophication induced by climate change in coastal environment.


Assuntos
Baías , Microbiota , Estações do Ano , Água do Mar
3.
Microb Ecol ; 84(3): 746-758, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34665286

RESUMO

Diatom blooms can significantly affect the succession of microbial communities, yet little is known about the assembly processes and interactions of microbial communities during autumn bloom events. In this study, we investigated the ecological effects of an autumn diatom bloom on prokaryotic communities (PCCs) and microeukaryotic communities (MECs), focusing on their assembly processes and interactions. The PCCs were largely dominated by Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria, and Flavobacteria, while the MECs primarily included Diatomea, Dinoflagellata, and Chlorophyta. The succession of both PCCs and MECs was mainly driven by this diatom bloom and environmental factors, such as nitrate and silicate. Null modeling revealed that homogeneous selection had a more pronounced impact on the structure of PCCs compared with that of MECs. In particular, drift and dispersal limitation cannot be neglected in the assembly processes of MECs. Co-occurrence network analyses showed that Litorimicrobium, Cercozoa, Marine Group I (MGI), Cryptomonadales, Myrionecta, and Micromonas may affect the bloom process. In summary, these results elucidated the complex, robust interactions and obviously distinct assembly mechanisms of PCCs and MECs during a diatom bloom and extend our current comprehension of the ecological mechanisms and microbial interactions involved in an autumn diatom bloom process.


Assuntos
Alphaproteobacteria , Diatomáceas , Dinoflagellida , Gammaproteobacteria , Baías/microbiologia
4.
Environ Pollut ; 265(Pt B): 115047, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585552

RESUMO

Terminating harmful algal blooms by using algicidal agents is a strong disturbance event in marine environment, which has powerful structural influences on microbial ecosystems. But, the response of microbial ecosystem to algicidal agent is largely unknown. Here, we conducted Phaeocystis globosa microcosms to investigate the dynamics, assembly processes, and co-occurrence patterns of microbial communities in response to algicidal process induced by a highly efficient algicidal agent, prodigiosin, by using 16S rRNA gene amplicon sequencing. The α-diversity of microbial community showed no obvious changes during the algicidal process in P. globosa microcosm treated with prodigiosin (group PD). Rhodobacteraceae increased significantly (P < 0.05) during algicidal process in PD, and this was mainly due to the lysis of P. globosa cells. Compared to the control group, the temporal turnover rates of common and rare taxa in PD were significantly higher because of the lysis of P. globosa induced by prodigiosin. Neutral processes mainly drove the assembly of microbial communities in all microcosms, even though the algicidal process induced by prodigiosin had no effect on the assembly processes. In addition, the time-decay relationship and co-occurrence network analysis indicate that rare taxa play important roles in maintaining microbial community stability in response to the algicidal process, rather than prodigiosin. These findings suggest that prodigiosin cannot affect the dynamics of microbial communities directly; however, future investigations into the function of microbial communities in response to prodigiosin remain imperative.


Assuntos
Haptófitas , Herbicidas , Microbiota , Proliferação Nociva de Algas , Prodigiosina , RNA Ribossômico 16S
5.
Environ Microbiol ; 22(5): 1707-1719, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31599072

RESUMO

Diatom blooms can significantly influence the dynamics of microbial communities, yet little is known about the interaction and assembly mechanisms of abundant and rare taxa during bloom process. Here, using 16S rRNA gene amplicon sequencing, we investigated the co-occurrence patterns and assembly processes of abundant and rare microbial communities during an early spring diatom bloom in Xiangshan bay. Our results showed that α-diversity indices in the rare subcommunity (RS) were significantly higher than those in the abundant and common subcommunities. ß-Diversity of the RS was the highest among three subcommunities, and the variation of ß-diversity in the three subcommunities was mainly induced by species turnover, which was also the highest in the RS. The assembly of microbial communities was mainly driven by the neutral processes, but the roles of neutral processes might differ in each subcommunity. Co-occurrence network analysis revealed that abundant and common operational taxonomic units were more often located in central positions within the network. Most of the modules in the network were specific to a particular bloom stage, owing to the succession of Skeletonema costatum. Overall, these findings expand current understanding of the microbial interaction and assembly mechanisms in marine environment suffering harmful algal bloom disturbance.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Proliferação Nociva de Algas/fisiologia , Interações Microbianas/fisiologia , Microbiota/genética , Biodiversidade , China , RNA Ribossômico 16S/genética , Estações do Ano
6.
Sci Total Environ ; 711: 134624, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818596

RESUMO

The interaction and assembly processes of microeukaryotic community compositions (MECs) are rarely elucidated in environment with strong disturbance such as harmful algal blooms. To fill this gap, we analyzed changes of MECs induced by a diatom bloom using 18S rRNA gene amplicon sequencing. The MECs were mainly dominated by Cercozoa (average relative abundance, 49.2%), Diatom (25.5%) and Dinoflagellata (15.6%). MECs changed significantly (ANOSIM P < 0.01) in four-bloom stages. Environmental factors including pH, DO, nitrate and phosphate, together with bacterial communities could significantly influence the variation of MECs. Co-occurrence network analysis revealed a complex interaction between microeukaryotic and bacterial communities. Most OTUs in modules of the co-occurrence network were specific to one particular bloom stage. Phylogenetic based ß-nearest taxon distance analyses revealed that stochastic processes mainly dominated microeukaryotic community assembly in the initial and after-bloom stage. However, microeukaryotic community assembly in middle and late stage of the bloom were driven by deterministic processes. In conclusion, both stochastic and deterministic processes play important roles in distinct bloom stages. These findings may expand current understandings of assembly mechanisms and microbial interactions underlying microeukaryotic dynamics in eutrophic aquatic ecosystems where harmful algal blooms occurred frequently.


Assuntos
Diatomáceas , Ecossistema , Proliferação Nociva de Algas , Filogenia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA