Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Cell ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652680

RESUMO

Flowering is a key developmental transition in the plant life cycle. In temperate climates, flowering often occurs in response to the perception of seasonal cues such as changes in day-length and temperature. However, the mechanisms that have evolved to control the timing of flowering in temperate grasses are not fully understood. We identified a Brachypodium distachyon mutant whose flowering is delayed under inductive long-day conditions due to a mutation in the JMJ1 gene, which encodes a Jumonji domain-containing protein. JMJ1 is a histone demethylase that mainly demethylates H3K4me2 and H3K4me3 in vitro and in vivo. Analysis of the genome-wide distribution of H3K4me1, H3K4me2, and H3K4me3 in wild-type plants by chromatin immunoprecipitation and sequencing (ChIP-seq) combined with RNA sequencing (RNA-seq) revealed that H3K4m1 and H3K4me3 are positively associated with gene transcript levels, whereas H3K4me2 is negatively correlated with transcript levels. Furthermore, JMJ1 directly binds to the chromatin of the flowering regulator genes VRN1 and ID1 and affects their transcription by modifying their H3K4me2 and H3K4me3 levels. Genetic analyses indicated that JMJ1 promotes flowering by activating VRN1 expression. Our study reveals a role for JMJ1-mediated chromatin modification in the proper timing of flowering in B. distachyon.

2.
Membranes (Basel) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668111

RESUMO

While efficient removal of uremic toxins and accumulated water is pivotal for the well-being of dialysis patients, protein adsorption to the dialyzer membrane reduces the performance of a dialyzer. Hydrophilic membrane modification with polyvinylpyrrolidone (PVP) has been shown to reduce protein adsorption and to stabilize membrane permeability. In this study we compared middle molecule clearance and filtration performance of nine polysulfone-, polyethersulfone-, and cellulose-based dialyzers over time. Protein adsorption was simulated in recirculation experiments, while ß2-microglobulin clearance as well as transmembrane pressure (TMP) and filtrate flow were determined over time. The results of this study showed that ß2-microglobulin clearance (-7.2 mL/min/m2) and filtrate flow (-54.4 mL/min) decreased strongly during the first 30 min and slowly afterwards (-0.7 mL/min/m2 and -6.8 mL/min, respectively, for the next 30 min); the TMP increase (+37.2 mmHg and +8.6 mmHg, respectively) showed comparable kinetics. Across all tested dialyzers, the dialyzer with a hydrophilic modified membrane (FX CorAL) had the highest ß2-microglobulin clearance after protein fouling and the most stable filtration characteristics. In conclusion, hydrophilic membrane modification with PVP stabilizes the removal capacity of middle molecules and filtration performance over time. Such dialyzers may have benefits during hemodiafiltration treatments which aim to achieve high exchange volumes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38558276

RESUMO

Approximately 2-10% in-stent restenosis (ISR) may occur following percutaneous coronary intervention (PCI) despite the use of modern drug-eluting stents (DES); thus, our study aimed to explore the effects of tripartite motif-containing (TRIM) 27 on ISR and the underlying mechanism. For this purpose, a total of 42 patients undergoing coronary angiography who had prior coronary angiography with DES implantation were recruited. Endothelial progenitor cells (EPCs) markers (defined as CD34 and vascular endothelial growth factoreceptor-2 (VEGFR-2)) in peripheral blood were measured to asses the circulating EPC level. The TRIM family-related gene expressions were detected by reverse transcription-quantitative polymerase chain reaction. Results suggested that ISR patients had reduced CD34+VEGFR-2+ and increased apoptosis rate of EPCs, along with upregulated TRIM27 and TRIM37 and downregulated TRIM28. TRIM27 promoted and TBK1 inhibited the apoptosis rate of EPCs. Mechanically, TRIM27 interacted with TBK1 to ubiquitinate TBK1 in in vitro study. In summary, TRIM27 promoted the progression of ISR in patients after PCI by ubiquitinating TBK1, which might provide novel ideas for the clinical treatment of ISR.

4.
Plant J ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526880

RESUMO

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.

5.
Cell Rep ; 43(2): 113726, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308844

RESUMO

Warm ambient conditions induce thermomorphogenesis and affect plant growth and development. However, the chromatin regulatory mechanisms involved in thermomorphogenesis remain largely obscure. In this study, we show that the histone methylation readers MORF-related gene 1 and 2 (MRG1/2) are required to promote hypocotyl elongation in response to warm ambient conditions. A transcriptome sequencing analysis indicates that MRG1/2 and phytochrome interacting factor 4 (PIF4) coactivate a number of thermoresponsive genes, including YUCCA8, which encodes a rate-limiting enzyme in the auxin biosynthesis pathway. Additionally, MRG2 physically interacts with PIF4 to bind to thermoresponsive genes and enhances the H4K5 acetylation of the chromatin of target genes in a PIF4-dependent manner. Furthermore, MRG2 competes with phyB for binding to PIF4 and stabilizes PIF4 in planta. Our study indicates that MRG1/2 activate thermoresponsive genes by inducing histone acetylation and stabilizing PIF4 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Histonas , Vernalização , Arabidopsis/genética , Cromatina , Metilação , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Cromossômicas não Histona
6.
ACS Appl Mater Interfaces ; 16(1): 1578-1586, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38118050

RESUMO

A lithium-sulfur (Li-S) battery is a promising candidate for an electrochemical energy-storage system. However, for a long time, it suffered from the "shuttle effect" of the intermediate products of soluble polysulfides and safety issues concerning the combustible liquid electrolyte and lithium anode. In this work, sulfide polyacrylonitrile (SPAN) is employed as a solid cycled cathode to resolve the "shuttle effect" fundamentally, a gel polymer electrolyte (GPE) based on poly(ethylene glycol) diacrylate (PEGDA) is matched to the SPAN cathode to minimize the safety concerns, and finally, a quasi-solid-state Li-SPAN battery is combined by an in situ thermal polymerization strategy to improve its adaptability to the existing battery assembly processes. The PEGDA-based GPE achieved at 60 °C for 40 min ensures little damage to the in situ battery, a good electrode-electrolyte interface, a high ionic conductivity of 6.87 × 10-3 S cm-1 at 30 °C, and a wide electrochemical window of 4.53 V. Ultimately, the as-prepared SPAN composite exerts a specific capacity of 1217.3 mAh g-1 after 250 cycles at 0.2 C with a high capacity retention rate of 89.9%. The combination of the SPAN cathode and in situ thermally polymerized PEGDA-based GPE provides a new inspiration for the design of Li-SPAN batteries with both high specific energy and high safety.

7.
Theor Appl Genet ; 136(11): 227, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851149

RESUMO

KEY MESSAGE: We clarify the influence of the genotypes of the heading date genes Hd1, Ghd7, DTH8, and PRR37 and their combinations on yield-related traits and the functional differences between different haplotypes. Heading date is a key agronomic trait in rice (Oryza sativa L.) that determines yield and adaptability to different latitudes. Heading date 1 (Hd1), Grain number, plant height, and heading date 7 (Ghd7), Days to heading on chromosome 8 (DTH8), and PSEUDO-RESPONSE REGULATOR 37 (PRR37) are core rice genes controlling photoperiod sensitivity, and these genes have many haplotypes in rice cultivars. However, the effects of different haplotypes at these genes on yield-related traits in diverse rice materials remain poorly characterized. In this study, we knocked out Hd1, Ghd7, DTH8, or PRR37, alone or together, in indica and japonica varieties and systematically investigated the agronomic traits of each knockout line. Ghd7 and PRR37 increased the number of spikelets and improved yield, and this effect was enhanced with the Ghd7 DTH8 or Ghd7 PRR37 combination, but Hd1 negatively affected yield. We also identified a new weak functional Ghd7 allele containing a mutation that interferes with splicing. Furthermore, we determined that the promotion or inhibition of heading date by different PRR37 haplotypes is related to PRR37 expression levels, day length, and the genetic background. For rice breeding, a combination of functional alleles of Ghd7 and DTH8 or Ghd7 and PRR37 in the hd1 background can be used to increase yield. Our study clarifies the effects of heading date genes on yield-related traits and the functional differences among their different haplotypes, providing valuable information to identify and exploit elite haplotypes for heading date genes to breed high-yielding rice varieties.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Fenótipo , Mutação , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Fotoperíodo
9.
ACS Med Chem Lett ; 13(12): 1864-1869, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36518694

RESUMO

Hypoxia-inducible factor, also known as HIF, is a transcriptional factor universally found in mammalian cells. HIF-1 is one of the HIF-families and acts as a heterodimer consisting of α and ß subunits. It is found to play significant roles in pathologic conditions such as tumor development and metastasis. Here, we first report benzo[d]isoxazole analogues as HIF-1α transcription inhibitors. Thereby, we designed and synthesized 26 benzo[d]isoxazole derivatives and evaluated their inhibitory activities against HIF-1α transcription in HEK293T cells by a dual-luciferase gene reporter assay. Among them, compounds 15 and 31 showed the best efficacy in a cell-based assay with an IC50 value of 24 nM and have potential antitumor effects for further development.

10.
ACS Synth Biol ; 11(12): 3900-3911, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36379012

RESUMO

Lanthipeptides are a major class of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by thioether cross-links called lanthionine (Lan) and methyllanthionine (MeLan). Previously, we developed a method to produce mature lanthipeptides in recombinant Escherichia coli, but manual steps hinder large-scale analogue screening. Here we devised an automated workflow for creating and screening variant libraries of haloduracin, a two-component class II lanthipeptide. An integrated work cell of a synthetic biology foundry was programmed to robotically execute DNA library construction, host transformation, peptide production, mass spectrometry analysis, and activity screening by agar diffusion assay. For recombinantly produced Halα peptides, the sequence-activity relationship of 380 single-residue variants and >1300 triple-residue combinatorial variants were rapidly analyzed in microplates within weeks. The peptide expression levels in E. coli were also visualized via robotic creation and analysis of GFP-lanthipeptide fusions for select peptide mutants. Following shake-flask fermentation and purification, one Halα mutant was confirmed with enhanced specific antimicrobial activity relative to the wild-type peptide. Overall, this approach may be generally applicable for the high-throughput characterization and engineering of RiPP natural products.


Assuntos
Bacteriocinas , Procedimentos Cirúrgicos Robóticos , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos/metabolismo
11.
Front Surg ; 9: 1025213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353609

RESUMO

Objective: Primary adrenal malignant tumor is rare. The factors affecting the prognosis remain poorly defined. This study targeted to construct and corroborate a model for predicting the overall survival of adrenal malignant tumor patients. Methods: We investigated the SEER database for patients with primary adrenal malignant tumor. 1,080 patients were divided into a construction cohort (n = 756) and a validation cohort (n = 324), randomly. The prognostic factors for overall survival were evaluated using univariate and multivariate Cox analyses. The nomogram was constructed and then validated with C-index, calibration curve, time-dependent ROC curve, and decision curve analysis in both cohorts. Then we divided the patients into 3 different risk groups according to the total points of the nomogram and analyzed their survival status by Kaplan-Meier curve with log-rank test. Results: The baseline characteristics of these two cohorts were not statistically different (P > 0.05). Using univariate and multivariate Cox analyses, 5 variables, including age, tumor size, histological type, tumor stage, and surgery of primary site, were distinguished as prognostic factors (P < 0.05). Based on these variables, we constructed a nomogram to predict the 3- year, 5- year, and 10-year overall survival. The C-indexes were 0.780 (0.760-0.800) in the construction cohort and 0.780 (0.751-0.809) in the validation cohort. In both cohorts, the AUC reached a fairly high level at all time points. The internal and external calibration curves and ROC analysis showed outstanding accuracy and discrimination. The decision curves indicated excellent clinical usefulness. The best cut-off values for the total points of the nomogram were 165.4 and 243.1, and the prognosis was significantly different for the three different risk groups (P < 0.001). Conclusion: We successfully constructed a model to predict the overall survival of primary adrenal malignant tumor patients. This model was validated to perform brilliantly internally and externally, which can assist us in individualized clinical management.

12.
ACS Appl Mater Interfaces ; 14(38): 43116-43126, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121712

RESUMO

Garnet Li7La3Zr2O12 (LLZO) is a potential solid electrolyte for solid-state batteries (SSBs) because of its high ionic conductivity, electrochemical stability, and mechanical strength. However, large interface resistances arising from deserted cathodes and rigid garnet/electrode interfaces block its application. In order to deal with this issue, a gel polymer electrolyte (GPE) was introduced into the cathode and both sides of LLZO to achieve a solid-state battery. Especially, the provided GPE could be thermally polymerized and solidified in situ, which would integrate LLZO with both anode and cathode and dramatically simplify the battery manufacturing process. Since the interface from rigid LLZO is improved by the flexible GPE buffer, the inability of flexible GPE to inhibit lithium dendrites is compensated by the rigid LLZO in return. As a result, the interface resistances are reduced from 6880 to 473 Ω, the Li symmetric cell exhibits a flat galvanostatic charge/discharge for 400 h without lithium dendrites, and the solid-state Li|GPE@LLZO|LiCoO2 battery exerts a capacity retention of 82.6% after 100 cycles at 0.5 C at room temperature. Such an interfacial engineering approach represents a promising strategy to address solid-solid interface issues and provides a new design for SSBs with high performance.

13.
Nat Commun ; 13(1): 5636, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163360

RESUMO

METTL4 belongs to a subclade of MT-A70 family members of methyltransferase (MTase) proteins shown to mediate N6-adenosine methylation for both RNA and DNA in diverse eukaryotes. Here, we report that Arabidopsis METTL4 functions as U2 snRNA MTase for N6-2'-O-dimethyladenosine (m6Am) in vivo that regulates flowering time, and specifically catalyzes N6-methylation of 2'-O-methyladenosine (Am) within a single-stranded RNA in vitro. The apo structures of full-length Arabidopsis METTL4 bound to S-adenosyl-L-methionine (SAM) and the complex structure with an Am-containing RNA substrate, combined with mutagenesis and in vitro enzymatic assays, uncover a preformed L-shaped, positively-charged cavity surrounded by four loops for substrate binding and a catalytic center composed of conserved residues for specific Am nucleotide recognition and N6-methylation activity. Structural comparison of METTL4 with the mRNA m6A enzyme METTL3/METTL14 heterodimer and modeling analysis suggest a catalytic mechanism for N6-adenosine methylation by METTL4, which may be shared among MT-A70 family members.


Assuntos
Arabidopsis , Metiltransferases , Adenosina/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação , Metiltransferases/metabolismo , Nucleotídeos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo
14.
ACS Appl Mater Interfaces ; 14(36): 41022-41036, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044767

RESUMO

Because of their high ionic conductivity, utilizing gel polymer electrolytes (GPEs) is thought to be an effective way to accomplish high-energy-density batteries. Nevertheless, most GPEs have poor adaptability to Ni-rich cathodes to alleviate the problem of inevitable rapid capacity decay during cycling. Therefore, to match LiNi0.8Co0.1Mn0.1O2 (NCM811), we applied pentaerythritol tetraacrylate (PETEA) monomers to polymerize in situ in a polyacrylonitrile (PAN) membrane to obtain GPEs (PETEA-TCGG-PAN). The impedance variations and key groups during the in situ polymerization of PETEA-TCGG-PAN are investigated in detail. PETEA-TCGG-PAN with a high lithium-ion transference number (0.77) exhibits an electrochemical decomposition voltage of 5.15 V. Noticeably, the NCM811|PETEA-TCGG-PAN|Li battery can cycle at 2C for 120 cycles with a capacity retention rate of 89%. Even at 6C, the discharge specific capacity is able to reach 101.47 mAh g-1. The combination of LiF and Li2CO3 at the CEI interface is the reason for the improved rate performance. Moreover, when commercialized LFP is used as the cathode, the battery can also cycle stably for 150 cycles at 0.5C. PETEA and PAN can together foster the transportation of Li+ with the construction of a fast ion transport channel, making a contribution to stable charge-discharge of the above batteries. This study provides an innovative design philosophy for designing in situ GPEs in high-energy-density lithium metal batteries.

15.
Chem Sci ; 13(25): 7581-7586, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35872818

RESUMO

Directed evolution is a powerful approach to engineer enzymes via iterative creation and screening of variant libraries. However, assay development for high-throughput mutant screening remains challenging, particularly for new catalytic activities. Mass spectrometry (MS) analysis is label-free and well suited for untargeted discovery of new enzyme products but is traditionally limited by slow speed. Here we report an automated workflow for directed evolution of new enzymatic activities via high-throughput library creation and label-free MS screening. For a proof of concept, we chose to engineer a cyclodipeptide synthase (CDPS) that synthesizes diketopiperazine (DKP) compounds with therapeutic potential. In recombinant Escherichia coli, site-saturation mutagenesis (SSM) and error-prone PCR (epPCR) libraries expressing CDPS mutants were automatically created and cultivated on an integrated work cell. Culture supernatants were then robotically processed for matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS analysis at a rate of 5 s per sample. The resulting mass spectral data were processed via custom computational algorithms, which performed a multivariant analysis of 108 theoretical mass-to-charge (m/z) values of 190 possible DKP molecules within a mass window of 115-373 Da. An F186L CDPS mutant was isolated to produce cyclo(l-Phe-l-Val), which is undetectable in the product profile of the wild-type enzyme. This robotic, label-free MS screening approach may be generally applicable to engineering other enzymes with new activities in high throughput.

16.
Sci Rep ; 12(1): 8085, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577849

RESUMO

Evaluating the accuracy of the satellite and reanalysis precipitation products is very important for understanding their uncertainties and potential applications. However, because of underestimation existing in commonly used evaluation benchmark, gauge precipitation data, it is necessary to investigate the influence of systematic errors in gauge data on the performance evaluation of satellite and reanalysis precipitation datasets. Daily satellite-based IMERG and model-based ERA5-Land, together with gauge precipitation data, were collected with the period from 2005 to 2016 over China in this study. Daily corrections for precipitation biases from wind-induced undercatch, wetting loss, and trace error were made for gauge measurements. A set of metrics, including relative bias, Kling-Gupta efficiency, frequency bias, and critical success index, were used to evaluate and intercompare the performances of IMERG and ERA5-Land against original and bias-corrected gauge data in different locations, years, seasons, climatic zones, classes of precipitation events, and precipitation phases. The results have shown that: After removing the bias in gauge data, the relative biases of IMERG and ERA5-Land both significantly decline. The noticeable changes of their accuracy occur and vary with different locations, years, seasons, climatic zones, and precipitation phases. Furthermore, the frequency biases of IMERG and ERA5-Land rise in no precipitation events and decline in light, moderate, heavy, and extreme precipitation events. The detection capability of IMERG and ERA5-Land in no and light precipitation events is also obviously affected. Therefore, this study has demonstrated the significant influence of systematic gauge precipitation errors on the assessment of IMERG and ERA5-Land and reinforces the necessity to remove negative bias in gauge data before using it as the benchmark.

17.
Materials (Basel) ; 15(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454468

RESUMO

Phase change energy storage is a new type of energy storage technology that can improve energy utilization and achieve high efficiency and energy savings. Phase change hysteresis affects the utilization effect of phase change energy storage, and the influencing factors are unknown. In this paper, a low-temperature eutectic phase change material, CaCl2·6H2O-MgCl2·6H2O, was selected as the research object, combined with the mechanism of phase change hysteresis characteristics, using a temperature acquisition instrument to draw the step cooling curve. A differential scanning calorimeter was used to measure the DSC (differential scanning calorimetry) curve, and the hysteresis characteristics of phase transformation were studied by factors, such as heat storage temperature, cooling temperature, and cooling rate. The experimental results show that when heating temperature increases by 30 °C, phase transition hysteresis decreases by about 3 °C. The cooling temperature decreased by 10 °C, and the phase transition hysteresis increased by 2.69 °C. This paper provides a new idea for optimizing the properties of phase change energy storage materials and provides a possibility for realizing the parametric control of phase change hysteresis factors.

18.
Chem Commun (Camb) ; 57(77): 9894-9897, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34494043

RESUMO

Herein, we report the first example of controllable magnetoresistance in a semiconducting carbonized phthalonitrile resin. This special phenomenon is explained using the different ratios of graphite-like (sp2) and diamond-like (sp3) bonds and localization length (a0) as well as the density of states at the Fermi-level (N(EF)).

19.
Biomater Sci ; 9(17): 5762-5780, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34351340

RESUMO

Phase change materials (PCMs) are widely used in solar energy utilization, industrial waste heat recovery and building temperature regulation. However, there have been few studies on the application of PCMs in the field of biomedicine. In recent years, some scholars have carried out research in the biomedicine field using the characteristics of PCMs. It was observed that the excellent properties of PCMs enhance the quality of a variety of biomedical applications with many advantages over existing applications, which provide new methods for the treatment of disease. PCMs have broad application prospects in the field of biomedicine. Therefore, a timely review of relevant research progress is of great significance for the continuous development of new methods. Innovatively, from the unique perspective of the biomedical field, this paper systematically reviews the application and related research progress of PCMs from four aspects: cold chains for vaccines and medicines, drug delivery systems, thermotherapy/cold compress therapy and medical dressings. In addition, we summarize and discuss the general principles of the design and construction of PCMs in the biomedical field. Finally, existing problems, solutions and future research directions are also put forward in order to provide a basis for guidance and promote the future applications of phase change materials in the biomedicine field.


Assuntos
Temperatura Alta , Hipertermia Induzida , Sistemas de Liberação de Medicamentos
20.
New Phytol ; 229(3): 1635-1649, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33089895

RESUMO

Rice (Oryza sativa) is a short-day (SD) plant originally having strong photoperiod sensitivity (PS), with SDs promoting and long days (LDs) suppressing flowering. Although the evolution of PS in rice has been extensively studied, there are few studies that combine the genetic effects and underlying mechanism of different PS gene combinations with variations in PS. We created a set of isogenic lines among the core PS-flowering genes Hd1, Ghd7 and DTH8 using CRISPR mutagenesis, to systematically dissect their genetic relationships under different day-lengths. We investigated their monogenic, digenic, and trigenic effects on target gene regulation and PS variation. We found that Hd1 and Ghd7 have the primary functions for promoting and repressing flowering, respectively, regardless of day-length. However, under LD conditions, Hd1 promotes Ghd7 expression and is recruited by Ghd7 and/or DTH8 to form repressive complexes that collaboratively suppress the Ehd1-Hd3a/RFT1 pathway to block heading, but under SD conditions Hd1 competes with the complexes to promote Hd3a/RFT1 expression, playing a tradeoff relationship with PS flowering. Natural allelic variations of Hd1, Ghd7 and DTH8 in rice populations have resulted in various PS performances. Our findings reveal that rice PS flowering is controlled by crosstalk of two modules - Hd1-Hd3a/RFT1 in SD conditions and (Hd1/Ghd7/DTH8)-Ehd1-Hd3a/RFT1 in LD conditions - and the divergences of these genes provide the basis for rice adaptation to broad regions.


Assuntos
Oryza , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA