Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38795031

RESUMO

Two-dimensional (2D) mesoporous transition metal oxides are highly desired in various applications, but their fast and low-cost synthesis remains a great challenge. Herein, a Maillard reaction inspired microexplosion approach is applied to rapidly synthesize ultrathin 2D mesoporous tin oxide (mSnO2). During the microexplosion between granular ammonia nitrate with melanoidin at high temperature, the organic species can be carbonized and expanded rapidly due to the instantaneous release of gases, thus producing ultrathin carbonaceous templates with rich functional groups to effectively anchor SnO2 nanoparticles on the surface. The subsequent removal of carbonaceous templates via calcination in air results in the formation of 2D mSnO2 due to the confinement effect of the templates. Pd nanoparticles are controllably deposited on the surface of 2D mSnO2 via in situ reduction, forming ultrathin 2D Pd/mSnO2 nanocomposites with thicknesses of 6-8 nm. Owing to the unique 2D mesoporous structure with rich oxygen defects and highly exposed metal-metal oxide interfaces, 2D Pd/mSnO2 exhibits excellent sensing performance toward acetone with high sensitivity, a short response time, and good selectivity under low working temperature (100 °C). This fast and convenient microexplosion synthesis strategy opens up the possibility of constructing 2D porous functional materials for various applications including high-performance gas sensors.

2.
Adv Mater ; : e2313920, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634436

RESUMO

Polymer cubosomes (PCs) have well-defined inverse bicontinuous cubic mesophases formed by amphiphilic block copolymer bilayers. The open hydrophilic channels, large periods, and robust physical properties of PCs are advantageous to many host-guest interactions and yet not fully exploited, especially in the fields of functional nanomaterials. Here, the self-assembly of poly(ethylene oxide)-block-polystyrene block copolymers is systematically investigated and a series of robust PCs is developed via a cosolvent method. Ordered nanoporous metal oxide particles are obtained by selectively filling the hydrophilic channels of PCs via an impregnation strategy, followed by a two-step thermal treatment. Based on this versatile PC platform, the general synthesis of a library of ordered porous particles with different pore structures 3 ¯ $\bar{3}$ 3 ¯ $\bar{3}$ , tunable large pore size (18-78 nm), high specific surface areas (up to 123.3 m2 g-1 for WO3) and diverse framework compositions, such as transition and non-transition metal oxides, rare earth chloride oxides, perovskite, pyrochlore, and high-entropy metal oxides is demonstrated. As typical materials obtained via this method, ordered porous WO3 particles have the advantages of open continuous structure and semiconducting properties, thus showing superior gas sensing performances toward hydrogen sulfide.

3.
Nat Commun ; 14(1): 8493, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129402

RESUMO

Organic-inorganic molecular assembly has led to numerous nano/mesostructured materials with fantastic properties, but it is dependent on and limited to the direct interaction between host organic structure-directing molecules and guest inorganic species. Here, we report a "solvent-pair surfactants" enabled assembly (SPEA) method to achieve a general synthesis of mesostructured materials requiring no direct host-guest interaction. Taking the synthesis of mesoporous metal oxides as an example, the dimethylformamide/water solvent pairs behave as surfactants and induce the formation of mesostructured polyoxometalates/copolymers nanocomposites, which can be converted into metal oxides. This SPEA method enables the synthesis of functional ordered mesoporous metal oxides with different pore sizes, structures, compositions and tailored pore-wall microenvironments that are difficult to access via conventional direct organic-inorganic assembly. Typically, nitrogen-doped mesoporous ε-WO3 with high specific surface area, uniform mesopores and stable framework is obtained and exhibits great application potentials such as gas sensing.

4.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764504

RESUMO

Germanium oxide (GeO2) is a high theoretical capacity electrode material due to its alloying and conversion reaction. However, the actual cycling capacity is rather poor on account of suffering low electron/ion conductivity, enormous volume change and agglomeration in the repeated lithiation/delithiation process, which renders quite a low reversible electrochemical lithium storage reaction. In this work, highly amorphous GeO2 particles are uniformly distributed in the carbon nanofiber framework, and the amorphous carbon nanofiber not only improves the conduction and buffers the volume changes but also prevents active material agglomeration. As a result, the present GeO2 and carbon composite electrode exhibits highly reversible alloying and conversion processes during the whole cycling process. The two reversible electrochemical reactions are verified by differential capacity curves and cyclic voltammetry measurements during the whole cycling process. The corresponding reversible capacity is 747 mAh g-1 after 300 cycles at a current density of 0.3 A g-1. The related reversible capacities are 933, 672, 487 and 302 mAh g-1 at current densities of 0.2, 0.4, 0.8 and 1.6 A g-1, respectively. The simple strategy for the design of amorphous GeO2/carbon composites enables potential application for high-performance LIBs.

5.
ACS Nano ; 17(16): 15763-15775, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556610

RESUMO

Highly porous sensitive materials with well-defined structures and morphologies are extremely desirable for developing high-performance chemiresistive gas sensors. Herein, inspired by the classical alkaloid precipitant reaction, a robust and reliable active mesoporous nitrogen polymer sphere-directed synthesis method was demonstrated for the controllable construction of heteroatom-doped mesoporous tungsten oxide spheres. In the typical synthesis, P-doped mesoporous WO3 monodisperse spheres with radially oriented channels (P-mWO3-R) were obtained with a diameter of ∼180 nm, high specific surface area, and crystalline skeleton. The in situ-introduced P atoms could effectively adjust the coordination environment of W atoms (Wδ+-Ov), giving rise to dramatically enhanced active surface-adsorbed oxygen species and unusual metastable ε-WO3 crystallites. The P-mWO3-R spheres were applied for the sensing of 3-hydroxy-2-butanone (3H2B), a biomarker of foodborne pathogenic bacteria Listeria monocytogenes (LM). The sensor exhibited high sensitivity (Ra/Rg = 29 to 3 ppm), fast response dynamics (26/7 s), outstanding selectivity, and good long-term stability. Furthermore, the device was integrated into a wireless sensing module to realize remote real-time and precise detection of LM in practical applications, making it possible to evaluate food quality using gas sensors conveniently.


Assuntos
Alcaloides , Listeria monocytogenes , Óxidos/química , Tungstênio/química , Biomarcadores , Nitrogênio
6.
Small ; 19(39): e2302327, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259638

RESUMO

Methane (CH4 ), as the vital energy resource and industrial chemicals, is highly flammable and explosive for concentrations above the explosive limit, triggering potential risks to personal and production safety. Therefore, exploiting smart gas sensors for real-time monitoring of CH4 becomes extremely important. Herein, the Pt-Pd nanoalloy functionalized mesoporous SnO2 microspheres (Pt-Pd/SnO2 ) were synthesized, which show uniform diameter (≈500 nm), high surface area (40.9-56.5 m2 g-1 ), and large mesopore size (8.8-15.8 nm). The highly dispersed Pt-Pd nanoalloys are confined in the mesopores of SnO2 , causing the generation ofoxygen defects and increasing the carrier concentration of sensitive materials. The representative Pt1 -Pd4 /SnO2 exhibits superior CH4 sensing performance with ultrahigh response (Ra /Rg = 21.33 to 3000 ppm), fast response/recovery speed (4/9 s), as well as outstanding stability. Spectroscopic analyses imply that such an excellent CH4 sensing process involves the fast conversion of CH4 into formic acid and CO intermediates, and finally into CO2 . Density functional theory (DFT) calculations reveal that the attractive covalent bonding interaction and rapid electron transfer between the Pt-Pd nanoalloys and SnO2 support, dramatically promote the orbital hybridization of Pd4 sites and adsorbed CH4 molecules, enhancing the catalytic activation of CH4 over the sensing layer.

7.
Small ; 19(32): e2301011, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066705

RESUMO

Site-selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx ) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site-selective modification strategy utilizing poly(ethylene oxide)-block-polystyrene (PEO-b-PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO-b-PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2 /WO3-x framework, and meanwhile FeOx nanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal-support interaction between FeOx and Pt. The selective modification of Pt NPs with FeOx makes the Pt NPs present an electron-deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2 /WO3-x -FeOx /Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

8.
ACS Appl Mater Interfaces ; 15(12): 15721-15731, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917766

RESUMO

Hydrogen as an important clean energy source with a high energy density has attracted extensive attention in fuel cell vehicles and industrial production. However, considering its flammable and explosive property, gas sensors are desperately desired to efficiently monitor H2 concentration in practical applications. Herein, a facile polymerization-induced aggregation strategy was proposed to synthesize uniform Si-doped mesoporous WO3 (Si-mWO3) microspheres with tunable sizes. The polymerization of the melamine-formaldehyde resin prepolymer (MF prepolymer) in the presence of silicotungstic acid hydrate (abbreviated as H4SiW) leads to uniform MF/H4SiW hybrid microspheres, which can be converted into Si-mWO3 microspheres through a simple thermal decomposition treatment process. In addition, benefiting from the pore confinement effect, monodispersed Pd-decorated Si-mWO3 microspheres (Pd/Si-mWO3) were subsequently synthesized and applied as sensitive materials for the sensing and detection of hydrogen. Owing to the oxygen spillover effect of Pd nanoparticles, Pd/Si-mWO3 enables adsorption of more oxygen anions than pure mWO3. These Pd nanoparticles dispersed on the surface of Si-mWO3 accelerated the dissociation of hydrogen and promoted charge transfer between Pd nanoparticles and WO3 crystal particles, which enhanced the sensing sensitivity toward H2. As a result, the gas sensor based on Pd/Si-mWO3 microspheres exhibited excellent selectivity and sensitivity (Rair/Rgas = 33.5) to 50 ppm H2 at a relatively low operating temperature (210 °C), which was 30 times higher than that of the pure Si-mWO3 sensor. To develop intelligent sensors, a portable sensor module based on Pd/Si-mWO3 in combination with wireless Bluetooth connection was designed, which achieved real-time monitoring of H2 concentration, opening up the possibility for use as intelligent H2 sensors.

9.
Nanotechnology ; 34(16)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36669198

RESUMO

Flexible three-dimensional interconnected carbon nanotubes on the carbon cloth (3D-CNTs/CC) were obtained through simple magnesium reduction reactions. According to the Nernst equation, the cell voltage based on these pure carbon electrodes without any additives could reach 1.5 V due to the higher di-hydrogen evolution over potential in neutral 3.5 M LiCl electrolytes. In order to improve the electrochemical performance of the electrodes, 3D-CNTs/CC electrodes covered with polyaniline barrier layer (3D-PANI/CNTs/CC) were prepared byin situelectropolymerization using interfacial engineering method. The assembled symmetric supercapacitors display a broadened voltage of 1.8 V, high areal capacitance of 380 mF cm-2, outstanding areal energy density of 85.5µWh cm-2and 84% of its initial capacitance after 20 000 charge-discharge cycles. This work demonstrated that the interface engineering strategy provides a promising way to improve the energy density of carbon-based aqueous supercapacitors by widening the voltage and boosting the capacitance simultaneously.

10.
Nat Commun ; 13(1): 6673, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335188

RESUMO

Controlled growth of well-oriented metal-organic framework nanoarrays on requisite surfaces is of prominent significance for a broad range of applications such as catalysis, sensing, optics and electronics. Herein, we develop a highly flexible soft nanobrush-directed synthesis approach for precise in situ fabrication of MOF nanoarrays on diverse substrates. The soft nanobrushes are constructed via surface-initiated living crystallization-driven self-assembly and their active poly(2-vinylpyridine) corona captures abundant metal cations through coordination interactions. This allows the rapid heterogeneous growth of MOF nanoparticles and the subsequent formation of MIL-100 (Fe), HKUST-1 and CUT-8 (Cu) nanoarrays with tailored heights of 220~1100 nm on silicon wafer, Ni foam and ceramic tube. Auxiliary functional components including metal oxygen clusters and precious metal nanoparticles can be readily incorporated to finely fabricate hybrid structures with synergistic features. Remarkably, the MIL-100 (Fe) nanoarrays doped with Keggin H3PMo10V2O40 dramatically boost formaldehyde selectivity up to 92.8% in catalytic oxidation of methanol. Moreover, the HKUST-1 nanoarrays decorated with Pt nanoparticles show exceptional sensitivity to H2S with a ppb-level detection limit.

11.
RSC Adv ; 12(38): 24724-24733, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36128395

RESUMO

Zinc ion hybrid capacitors (ZHCs) are expected to be candidates for large-scale energy storage products due to their high power density and large energy density. Due to their low cost and stability, carbon materials are generally the first choice for the cathode of ZHCs, but they face a challenge in the serious self-discharge behavior. Herein, zinc ion hybrid capacitors with high-performance are successfully assembled using a porous carbon cathode derived from low-cost p-doped waste biomass and a commercial zinc foil anode. The p-doped walnut shell ZHCs delivered a specific capacity of 158.9 mA h g-1 with an energy density of 127.1 W h kg-1 at a low current density. More importantly, the device had outstanding anti-self-discharge characteristics (retaining 77.98% of its specific capacity after a 72 h natural self-discharge test) and long-term cycle stability (retaining 88.2% of its initial specific capacity after 15 000 cycles at 7.5 A g-1). This work presents guidance and support for the design and optimization of electrode materials for zinc ion supercapacitors and next-generation aqueous zinc ion energy storage performance.

12.
ACS Cent Sci ; 8(8): 1196-1208, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36032768

RESUMO

Dynamic coassembly of block copolymers (BCPs) with Keggin-type polyoxometalates (POMs) is developed to synthesize heteroatom-doped tungsten oxide with controllable nanostructures, including hollow hemispheres, nanoparticles, and nanowires. The versatile coassembly in dual n-hexane/THF solvent solution enables the fomation of poly(ethylene oxide)-b-polystyrene (PEO-b-PS)/POMs (e.g., silicotungstic acid, H4SiW12O40) nanocomposites with different morphologies such as spherical vesicles, inverse spherical micelles, and inverse cylindrical micelles, which can be readily converted into diverse nanostructured metal oxides with high surface area and unique properties via in situ thermal-induced structural evolution. For example, uniform silicon-doped WO3 (Si-WO3) hollow hemispheres derived from coassembly of PEO-b-PS with H4SiW12O40 were utilized to fabricate gas sensing devices which exhibit superior gas sensing performance toward acetone, thanks to the selective gas-solid interface catalytic reaction that induces resistance changes of the devices due to the high specific surface areas, abundant oxygen vacancies, and the Si-doping induced metastable ε-phase of WO3. Furthermore, density functional theory (DFT) calculation reveals the mechanism about the high sensitivity and selectivity of the gas sensors. On the basis of the as-fabricated devices, an integrated gas sensor module was constructed, which is capable of real-time monitoring the environmental acetone concentration and displaying relevant sensing results on a smart phone via Bluetooth communication.

13.
Dalton Trans ; 51(32): 12071-12079, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880698

RESUMO

The ingenious design of high-performance tin-based lithium-ion batteries (LIBs) is challenging due to their poor conductivity and drastic volume change during continuous lithiation/delithiation cycles. Herein, we present a strategy to confine heterostructured SnSe2-SnO2 nanoparticles into macroscopic nitrogen-doped carbon microbelts (SnSe2-SnO2@NC) as anode materials for LIBs. The composites exhibit an excellent specific capacity of 436.3 mA h g-1 even at 20 A g-1 and an ultrastable specific capacity of 632.7 mA h g-1 after 2800 cycles at 5 A g-1. Density Functional Theory (DFT) calculations reveal that metallic SnSe2-SnO2 heterostructures endow the lithium atoms at the interface with high adsorption energy, which promotes the anchoring of Li atoms, and enhances the electrical conductivity of the anode materials. This demonstrates the superior Li+ storage performance of the SnSe2-SnO2@NC microbelts as anode materials.

14.
Nanotechnology ; 33(13)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34937010

RESUMO

Defect engineering have profound influence on the energy storage properties of electrode hybrids by adjusting their intrinsic electronic characteristics. For iron carbide based materials, however, the effect of defect (especially cation vacancies) toward their electrochemical performance are still unclear. Herein, the feasible and scalable synthesis of FexC@NC with 3D honeycomb-like carbon architecture and abundant Fe vacancies via template etching is reported. Such structure enable outstanding lithium-ion storage properties owing to hierarchical pores, improved intrinsic electrochemical activity, as well as the introduction of more active sites. As a result, the FexC@NC-2 presents a high reversible specific capacity of 1079 mAh g-1after 1000 cycles. Moreover, an excellent cycling stability can be achieved via maintaining a high-capacity retention (689 mAh g-1, 98.4%) over 1000 cycles at 5 A g-1. This study provides a feasible strategy for developing high-performance hybrids with hierarchical pore and rich defects structures.

15.
ACS Cent Sci ; 7(11): 1885-1897, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34841059

RESUMO

Mesoporous materials have been extensively studied for various applications due to their high specific surface areas and well-interconnected uniform nanopores. Great attention has been paid to synthesizing stable functional mesoporous metal oxides for catalysis, energy storage and conversion, chemical sensing, and so forth. Heteroatom doping and surface modification of metal oxides are typical routes to improve their performance. However, it still remains challenging to directly and conveniently synthesize mesoporous metal oxides with both a specific functionalized surface and heteroatom-doped framework. Here, we report a one-step multicomponent coassembly to synthesize Pt nanoparticle-decorated Si-doped WO3 nanowires interwoven into 3D mesoporous superstructures (Pt/Si-WO3 NWIMSs) by using amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS), Keggin polyoxometalates (H4SiW12O40) and hydrophobic (1,5-cyclooctadiene)dimethylplatinum(II) as the as structure-directing agent, tungsten precursor and platinum source, respectively. The Pt/Si-WO3 NWIMSs exhibit a unique mesoporous structure consisting of 3D interwoven Si-doped WO3 nanowires with surfaces homogeneously decorated by Pt nanoparticles. Because of the highly porous structure, excellent transport of carriers in nanowires, and rich WO3/Pt active interfaces, the semiconductor gas sensors based on Pt/Si-WO3 NWIMSs show excellent sensing properties toward ethanol at low temperature (100 °C) with high sensitivity (S = 93 vs 50 ppm), low detection limit (0.5 ppm), fast response-recovery speed (17-7 s), excellent selectivity, and long-term stability.

16.
Nanotechnology ; 33(7)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34753121

RESUMO

We successfully designed and prepared hierarchical Ni3S2nanorod@nanosheet arrays on three-dimensional Ni foam via facile hydrothermal sulfuration. We conducted a series of time- and temperature-dependent experiments to determine the Ostwald ripening process of hierarchical Ni3S2nanorod@nanosheet arrays. The rationally hierarchical architecture creates an excellent supercapacitor electrode for Ni3S2nanorod@nanosheet arrays. The areal capacitance of this array reaches 5.5 F cm-2at 2 mA cm-2, which is much higher than that of Ni3S2nanosheet arrays (1.5 F cm-2). The corresponding asymmetric supercapacitor exhibits a wide potential window of 1.6 V and energy density up to 1.0 Wh cm-2when the proposed array is utilized as the positive electrode with activated carbon as the negative electrode. This electrochemical performance enhancement is attributable to the hierarchical structure and synergistic cooperation of macroporous Ni foam and well-aligned Ni3S2nanorod@nanosheet arrays. Our results represent a promising approach to the preparation of hierarchical nanorod@nanosheet arrays as high-performing electrochemical capacitors.

17.
Small ; 17(39): e2103176, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405523

RESUMO

2D transition metal oxides (TMO) nanosheets have attracted considerable attention in both fundamental research and practical applications. Herein, a convenient programmable and scalable carbonate crystals templating synthesis is developed to produce high-quality self-hybrid TMO nanosheets (Si-WO3- x , Tax Oy , Mnx Oy ) and their respective polymetallic oxide hybrid nanosheets with tunable composition, low-cost and high-yield. Taking tungsten oxide nanosheets as example, silicotungstic acid precursor is in situ converted into tungsten oxide nanosheets like scales on the surface of calcium carbonate crystals through the simple soaking-drying-calcination process, and after selectively dissolving calcium carbonate by etching, the dispersive tungsten oxide nanosheets with unique self-hybrid Si-doped h-WO3 /ε-WO3 /WO2 compositions are obtained, which show excellent acetone gas-sensing performances at low temperatures. This carbonate-template method opens up the possibility to economically produce various functional TMO nanosheets with specific compositions for diverse applications.

18.
Nanotechnology ; 31(21): 215403, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32031997

RESUMO

Antimony (Sb) anode has attracted increasing attention given its high theoretical capacity and suitable working potential. Nonetheless, its practical application is largely hindered by huge volume changes during the cyclic process, resulting in unsatisfactory long-term cycled stabilities at high current density. In this work, large-scale ultrafine Sb nanoparticles are functionally designed to encapsulate into a 3D carbon microfiber framework (CMF) via a scalable electrospinning approach followed by a thermal treatment process. This fabrication strategy effectively avoids the change in the volume of the Sb anode and provides a fast conductive network to serve as an efficient 3D e/Li+ transport pathway. Benefiting from this novel structural design, an ultrafine Sb nanoparticles@carbon microfiber framework (U-Sb-NPs@CMF) composite anode used for lithium-ion batteries (LIBs) delivers a high reversible capacity of 622 mAh g-1 after 200 cycles at 0.5 A g-1 and 507 mAh g-1 after 2000 cycles at 2 Ag-1 and a high-capacity retention of 350 mAh g-1 even after 5000 long-term cycles. These outstanding charge-discharge performances suggest that the U-Sb-NPs@CMF composite is a promising candidate for an anode material in the application of LIBs.

19.
Nanotechnology ; 30(32): 325405, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970331

RESUMO

Facile preparation of rational SnOx-based electrode materials with excellent electrochemical performance is highly desired for lithium ion batteries (LIBs). In this work, carbon framework microbelt supporting SnOx nanoparticles (CFM-SnOx) were prepared via a facile electrospinning technology and annealing treatment process. The as-synthesized CFM-SnOx electrode exhibits high reversible capacity of 768 mAh g-1 at 0.2 A g-1 after 200 cycles, high rate capacity of 535 mAh g-1 at high current density of 3.2 A g-1. The facile synthesis and superior performance indicate that the as-synthesized CFM-SnOx is a competitive anode material for LIBs.

20.
Small ; 13(45)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024532

RESUMO

To satisfy the increasing energy demands of portable electronics, electric vehicles, and miniaturized energy storage devices, improvements to lithium-ion batteries (LIBs) are required to provide higher energy/power densities and longer cycle lives. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes are promising candidates for use as electrodes in next-generation LIBs owing to their extremely high gravimetric and volumetric capacities, low working voltages, and natural abundances. However, due to the violent volume changes that occur during lithium-ion insertion/extraction and the formation of an unstable solid electrolyte interface, the use of Group IVA element-based anodes in commercial LIBs is still a great challenge. Evaluating the electrochemical performance of an anode in a full-cell configuration is a key step in investigating the possible application of the active material in LIBs. In this regard, the recent progress and important approaches to overcoming and alleviating the drawbacks of Group IVA element-based anode materials are reviewed, such as the severe volume variations during cycling and the relatively brittle electrode/electrolyte interface in full-cell LIBs. Finally, perspectives and future challenges in achieving the practical application of Group IVA element-based anodes in high-energy and high-power-density LIB systems are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA