Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1390310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952478

RESUMO

Background: N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. Methods: Single-nucleus RNA sequencing was performed in the Substantia Nigra (SN) of MPTP mice. UMAP analysis was used for the dimensionality reduction visualization of the SN in the MPTP mice. Known marker genes highly expressed genes in each cluster were used to annotate most clusters. Specific Differentially Expressed Genes (DEGs) and PD risk genes analysis were used to find MPTP-associated cells. GO, KEGG, PPI network, GSEA and CellChat analysis were used to reveal cell type-specific functional alterations and disruption of cell-cell communication networks. Subset reconstruction and pseudotime analysis were used to reveal the activation status of the cells, and to find the transcription factors with trajectory characterized. Results: Initially, we observed specific DEGs and PD risk genes enrichment in microglia. Next, We obtained the functional phenotype changes in microglia and found that IGF, AGRN and PTN pathways were reduced in MPTP mice. Finally, we analyzed the activation state of microglia and revealed a pro-inflammatory trajectory characterized by transcription factors Nfe2l2 and Runx1. Conclusion: Our work revealed alterations in microglia function, signaling pathways and key genes in the SN of MPTP mice.

2.
Mol Neurobiol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528305

RESUMO

Alzheimer's disease (AD) is a common age-associated progressive neurodegenerative disorder that is implicated in the aberrant regulation of numerous circular RNAs (circRNAs). Here, we reported that circ-Bptf, a conserved circRNA derived from the Bptf gene, showed an age-dependent decrease in the hippocampus of APP/PS1 mice. Overexpression of circ-Bptf significantly reversed dendritic spine loss and learning and memory impairment in APP/PS1 mice. Moreover, we found that circ-Bptf was predominantly localized to the cytoplasm and upregulated p62 expression by binding to miR-138-5p. Furthermore, the miR-138-5p mimics reversed the decreased expression of p62 induced by the silencing of circ-Bptf. Together, our findings suggested that circ-Bptf ameliorated learning and memory impairments via the miR-138-5p/p62 axis in APP/PS1 mice. It may act as a potential player in AD pathogenesis and therapy.

3.
Front Mol Neurosci ; 15: 1037912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533129

RESUMO

Introduction: Age is an established risk factor for neurodegenerative disorders. Aging-related cognitive decline is a common cause of memory impairment in aging individuals, in which hippocampal synaptic plasticity and hippocampus-dependent memory formation are damaged. Circular RNAs (circRNAs) have been reported in many cognitive disorders, but their role in aging-related memory impairment is unclear.Methods: In this study, we aimed to investigate the effects of circ-Vps41 on aging-related hippocampus-dependent memory impairment and explore the potential mechanisms. Here, D-galactose was used to produce a conventional aging model resulting in memory dysfunction. Results: Circ-Vps41 was significantly downregulated in D-galactose-induced aging in vitro and in vivo. The overexpression of circ-Vps41 could upregulate synaptophysin (Syp), thereby promoting the synaptic plasticity and alleviating cognitive impairment in aging mice. Mechanistically, we found that circ-Vps41 upregulated Syp expression by physically binding to miR-24-3p. Moreover, the miR-24-3p mimics reversed the circ-Vps41 overexpression-induced increase in Syp expression. Discussion: Overexpression of circ-Vps41 alleviated the synaptic plasticity and memory dysfunction via the miR-24-3p/Syp axis. These findings revealed circ-Vps41 regulatory network and provided new insights into its potential mechanisms for improving aging-related learning and memory impairment.

4.
Cell Death Dis ; 13(5): 477, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589691

RESUMO

Circular RNA (circRNA) is a type of non-coding RNA that is widely expressed in mammals. It is highly conserved and abundantly expressed in the brain. Here, we report the regulatory role of circRNA derived from the pantothenate kinase 1 (Pank1) gene (circ-Pank1) in Parkinson's disease (PD). Circ-Pank1 is highly expressed in the substantia nigra (SN) of PD model mice treated with rotenone and in the MN9D cell model of dopaminergic neurons. The circ-Pank1 knockdown ameliorated dopaminergic neuron damage and locomotor dysfunction after the treatment with rotenone. We found that circ-Pank1 could adsorb miR-7a-5p and upregulate the expression of α-synuclein (α-syn), which is a molecular hallmark closely related to PD. The inhibition of miR-7a-5p reversed the circ-Pank1 knockdown-induced amelioration of dopaminergic neuron injury. In conclusion, circ-Pank1 is overexpressed in PD and enhances the locomotor dysfunction via the miR-7a-5p/α-syn signaling axis. We revealed the functional role of circRNAs in the progression of PD and provided a potential target for noncoding RNAs in delaying the progression of PD.


Assuntos
MicroRNAs , Doença de Parkinson , Animais , Proliferação de Células , Neurônios Dopaminérgicos/metabolismo , Mamíferos/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , RNA Circular/genética , Rotenona , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA