Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Total Environ ; 933: 173062, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723959

RESUMO

Sewage treatment as a high energy consumption industry, its electricity consumption accounts for 3 % of the total electricity consumption of society. That means significant greenhouse gas emissions. In the context of China's goal of "reaching carbon peak by 2030 and achieving carbon neutrality by 2060", reducing the energy consumption of wastewater treatment systems has emerged as an important issue in recent years. In this paper, the GPS-X simulation software was employed to conduct a simulation study of a modified Anoxic-Aerobic-Oxic wastewater treatment plant (WWTP) in Wuhan, and the response surface methodology (RSM) was utilized to ascertain the interactive effects of DO, IRF, ERR, and SD on the effluent quality, thereby identifying the operational parameters that minimize energy consumption while maintaining satisfactory effluent quality. Additionally, the PVsyst software was employed to design the solar power generation system of the WWTP and analyze its power generation potential. On this basis, through the coupling of photovoltaic power, electricity load, time-of-use pricing, and the water quality simulation model, and taking the WWTP data in September as a case study, the electricity usage strategies under various illumination conditions were formulated. The aim is to maximize the use of photovoltaic power to reduce the cost and carbon emissions of the WWTP. The results show that the optimal combination of operational parameters, including an external reflux ratio of 0.3, the internal recycle flow of 50,000 m3/d, and the sludge discharge of 448 m3/d, resulted in a reduction in power of 208.5 kW, and after the combination optimization of operational parameters and electricity utilization, the operation cost of the WWTP in September was reduced by 40 % âˆ¼ 60 %, and the carbon emission attributable to electricity was reduced by 30 % âˆ¼ 50 %.

2.
Cancer Sci ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508217

RESUMO

N6-Methyladenosine (m6A) is a important process regulating gene expression post-transcriptionally. Programmed death ligand 1 (PD-L1) is a major immune inhibitive checkpoint that facilitates immune evasion and is expressed in tumor cells. In this research we discovered that Wilms' tumor 1-associated protein (WTAP) degradation caused by ubiquitin-mediated cleavage in cancer cells (colorectal cancer, CRC) under hypoxia was inhibited by Pumilio homolog 1 (PUM1) directly bound to WTAP. WTAP enhanced PD-L1 expression in a way that was m6A-dependent. m6A "reader," Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) identified methylated PD-L1 transcripts and subsequently fixed its mRNA. Additionally, we found that T-cell proliferation and its cancer cell-killing effects were prevented by overexpression of WTAP in vitro and in vivo. Overexpression prevented T cells from proliferating and killing CRC by maintaining the expression of PD-L1. Further evidence supporting the WTAP-PD-L1 regulatory axis was found in human CRC and organoid tissues. Tumors with high WTAP levels appeared more responsive to anti-PD1 immunotherapy, when analyzing samples from patients undergoing treatment. Overall, our findings demonstrated a novel PD-L1 regulatory mechanism by WTAP-induced mRNA epigenetic regulation and the possible application of targeting WTAP as immunotherapy for tumor hypoxia.

3.
ChemSusChem ; 17(9): e202301710, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407568

RESUMO

Lithium-ion batteries, with high energy density and long cycle life, have become the battery of choice for most vehicles and portable electronic devices; however, energy density, safety and cycle life require further improvements. Single-functional group electrolyte additives are very limited in practical applications, a ternary polymer bifunctional electrolyte additive copolymer (acrylonitrile-butyl hexafluoro methacrylate- poly (ethylene glycol) methacrylate- methyl ether) (PMANHF) was synthesized by free radical polymerization of acrylonitrile, 2, 2, 3, 4, 4, 4-hexafluorobutyl methacrylate and poly (ethylene glycol) methyl ether methacrylate. A series of characterizations show that in Li metal anodes, the preferential reduction of PMANHF is conducive to the formation of a uniform and stable solid electrolyte interphase layer, and Li deposition is uniform and dense. At the NCM811 cathode, a film composed of LiF- and Li3N-rich is formed at the cathode-electrolyte interface, mitigating the side reaction at the interface. At 1.0 mA cm-2, the Li/Li cell can be stabilized for 1000 cycles. In addition, the Li/NCM811 cell can stabilize 200 cycles with a cathode capacity of 153.7 mAh g-1, with the capacity retention of 89.93 %, at a negative/positive capacity ratio of 2.5. This study brings to light essential ideas for the fabrication of additives for lithium-metal batteries.

4.
PLoS Pathog ; 20(1): e1011949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285715

RESUMO

Schistosomes are flatworm parasites that undergo a complex life cycle involving two hosts. The regulation of the parasite's developmental processes relies on both coding RNAs and non-coding RNAs. However, the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs) in schistosomes remain largely unexplored. Here we conduct advanced RNA sequencing on male and female S. japonicum during their pairing and reproductive development, resulting in the identification of nearly 8,000 lncRNAs. This extensive dataset enables us to construct a comprehensive co-expression network of lncRNAs and mRNAs, shedding light on their interactions during the crucial reproductive stages within the mammalian host. Importantly, we have also revealed a specific lncRNA, LNC3385, which appears to play a critical role in the survival and reproduction of the parasite. These findings not only enhance our understanding of the dynamic nature of lncRNAs during the reproductive phase of schistosomes but also highlight LNC3385 as a potential therapeutic target for combating schistosomiasis.


Assuntos
Parasitos , RNA Longo não Codificante , Schistosoma japonicum , Esquistossomose , Animais , Masculino , Feminino , Schistosoma japonicum/genética , RNA Longo não Codificante/genética , RNA Antissenso/genética , Esquistossomose/parasitologia , Parasitos/genética , Mamíferos
5.
ACS Appl Mater Interfaces ; 15(39): 45834-45843, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733956

RESUMO

Lithium (Li) metal anodes have become an important component of the next generation of high energy density batteries. However, the Li metal anode still has problems such as Li dendrite growth and unstable solid electrolyte interface layer. Herein, we present a functional electrolyte additive (PANHF) successfully synthesized from acrylonitrile and hexafluorobutyl methacrylate via a polymerization reaction. With extensive analytical characterization, it is found that the PANHF can improve the reversibility and Coulombic efficiency of the Li deposition/dissolution reaction and prevent the growth of Li dendrites by forming a solid electrolyte interphase rich in organic matter on the outer layer and LiF on the inner layer. The results show that the cycling performance of the Li/Li cell was greatly improved in the electrolyte containing 0.5 wt % PANHF. Specifically, the cycling stability of more than 700 cycles was achieved at a current density of 1.0 mA cm-2. Moreover, the Li/NCM811 cell with 0.5 wt % PANHF has a higher capacity of 137.7 mA h g-1 at 1.0 C and a capacity retention of 83.41% after 200 cycles. This work highlights the importance of protecting the Li metal anode with functional bipolymer additives for next-generation Li metal batteries.

6.
IEEE Trans Biomed Circuits Syst ; 17(5): 952-967, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37192039

RESUMO

Wearable intelligent health monitoring devices with on-device biomedical AI processor can be used to detect the abnormity in users' biomedical signals (e.g., ECG arrythmia classification, EEG-based seizure detection). This requires ultra-low power and reconfigurable biomedical AI processor to support battery-supplied wearable devices and versatile intelligent health monitoring applications while achieving high classification accuracy. However, existing designs have issues in meeting one or more of the above requirements. In this work, a reconfigurable biomedical AI processor (named BioAIP) is proposed, mainly featuring: 1) a reconfigurable biomedical AI processing architecture to support versatile biomedical AI processing. 2) an event-driven biomedical AI processing architecture with approximate data compression to reduce the power consumption. 3) an AI-based adaptive-learning architecture to address patient-to-patient variation and improve the classification accuracy. The design has been implemented and fabricated using a 65nm CMOS process technology. It has been demonstrated with three typical biomedical AI applications, including ECG arrythmia classification, EEG-based seizure detection and EMG-based hand gesture recognition. Compared with the state-of-the-art designs optimized for single biomedical AI tasks, the BioAIP achieves the lowest energy per classification among the designs with similar accuracy, while supporting various biomedical AI tasks.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Arritmias Cardíacas , Convulsões , Inteligência Artificial
7.
Nat Commun ; 14(1): 2883, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208342

RESUMO

The Li metal is an ideal anode material owing to its high theoretical specific capacity and low electrode potential. However, its high reactivity and dendritic growth in carbonate-based electrolytes limit its application. To address these issues, we propose a novel surface modification technique using heptafluorobutyric acid. In-situ spontaneous reaction between Li and the organic acid generates a lithiophilic interface of lithium heptafluorobutyrate for dendrite-free uniform Li deposition, which significantly improves the cycle stability (Li/Li symmetric cells >1200 h at 1.0 mA cm-2) and Coulombic efficiency (>99.3%) in conventional carbonate-based electrolytes. This lithiophilic interface also enables full batteries to achieve 83.2% capacity retention over 300 cycles under realistic testing condition. Lithium heptafluorobutyrate interface acts as an electrical bridge for uniform lithium-ion flux between Li anode and plating Li, which minimizes the occurrence of tortuous lithium dendrites and lowers interface impedance.

8.
J Gastrointest Oncol ; 14(1): 233-244, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915463

RESUMO

Background: Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Advanced stage CRC, during the recent past, had a dismal prognosis and only a few available treatments. Pumilio homologous protein 1 (PUM1) is reportedly aberrant in human malignancies, including CRC. However, the role of PUM1 in the regulation of tumor-initiating cells (T-ICs) remains unknown. Methods: The levels of messenger RNAs (mRNAs) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunoblot analyses. Statistical analyses were performed to determine the associations between the levels of PUM1 and tumor features and patient outcomes. Whether PUM1 is a downstream target of miR-218-5p was verified by bioinformatics target gene prediction and qRT-PCR. Results: Herein, it was found that T-ICs, chemoresistance, and recurrent CRC samples all manifest increased PUM1 expression. Functional investigations have shown that PUM1 increased the self-renewal, tumorigenicity, malignant proliferation, and chemoresistance of colorectal cells. PUM1 activates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway biochemically. Furthermore, it was discovered that miR-218-5p specifically targets T-ICs' PUM1 3'-untranslated region (3'-UTR). More importantly, the PUM1/PI3K/AKT axis regulates CRC cells' responses to treatment with cetuximab, and PUM1 overexpression increased cetuximab resistance. More evidence points to the possibility that low PUM1 may predict cetuximab benefits in CRC patients after analysis of the patient cohort, patient-derived tumor organoids, and patient-derived xenografts (PDXs). Conclusions: Taken together, the result of this work points to the critical function of the miR-218-5p/PUM1/PI3K/AKT regulatory circuit in regulating T-ICs characteristics and thus suggests possible therapeutic targets for CRC.

9.
J Chem Neuroanat ; 129: 102249, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791922

RESUMO

A-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson's disease (PD), a neurodegenerative disease with no effective treatment. Therefore, there has been a strong drive to clarify the pathology of PD associated with α-syn. Several mechanisms have been proposed to unravel the pathological cascade of this disease, and most of them share a particular similarity: cell-to-cell communication through exosomes (EXO). Here, we show that tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) promotes the secretion of α-syn-containing EXO by microglia, resulting in motor dysfunction in PD. Upregulation of TNFRSF10B predicted severer condition in PD patients. In response to α-syn preformed fibrils (PFF), the expression of TNFRSF10B was increased in microglia. PFF-treated microglia exhibited a pro-inflammatory phenotype and caused neuronal damage by secreting α-syn-containing EXO. TNFRSF10B downregulation in microglia inhibited the secretion of α-syn-containing EXO and the release of pro-inflammatory factors, and ameliorated neuronal injury. PFF induced motor dysfunction in mice, which was ameliorated by inhibiting TNFRSF10B to suppress microglia-mediated α-syn communication or by directly depleting microglia. Taken together, these results indicate that TNFRSF10B promotes neuronal injury and motor dysfunction by delivery of α-syn-containing EXO and highlight the TNFRSF10B knockdown as a potential therapeutic target in PD.


Assuntos
Microglia , Doença de Parkinson , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/metabolismo , Exossomos/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos
10.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201781

RESUMO

Electromagnetic wave pollution has become a significant harm posed to human health and precision instruments. To shelter such instruments from electromagnetic radiation, high-frequency electromagnetic interference (EMI) shielding materials are extremely desirable. The focus of this research is lightweight, high-absorption EMI shielding composites. Simple aqueous dispersion and drying procedures were used to prepare cotton fiber (CF)-based sheets combined with various zinc oxide (ZnO) contents. These composites were carbonated in a high-temperature furnace at 800 °C for two hours. The obtained CF/ZnO samples have densities of 1.02-1.08 g/cm3. The EMI shielding effectiveness of CF-30% ZnO, CF-50% ZnO, and CF-70% ZnO reached 32.06, 38.08, and 34.69 dB, respectively, to which more than 80% of absorption is attributed. The synergetic effects of carbon networks and surface structures are responsible for the high EMI shielding performance; various reflections inside the interconnected networks may also help in improving their EMI shielding performance.

11.
Front Microbiol ; 13: 1045490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532433

RESUMO

Schistosomiasis is a zoonotic parasitic disease caused by schistosome infection that severely threatens human health. Therapy relies mainly on single drug treatment with praziquantel. Therefore, there is an urgent need to develop alternative medicines. The glutamate neurotransmitter in helminths is involved in many physiological functions by interacting with various cell-surface receptors. However, the roles and detailed regulatory mechanisms of the metabotropic glutamate receptor (mGluR) in the growth and development of Schistosoma japonicum remain poorly understood. In this study, we identified two putative mGluRs in S. japonicum and named them SjGRM7 (Sjc_001309, similar to GRM7) and SjGRM (Sjc_001163, similar to mGluR). Further validation using a calcium mobilization assay showed that SjGRM7 and SjGRM are glutamate-specific. The results of in situ hybridization showed that SjGRM is mainly located in the nerves of both males and gonads of females, and SjGRM7 is principally found in the nerves and gonads of males and females. In a RNA interference experiment, the results showed that SjGRM7 knockdown by double-stranded RNA (dsRNA) in S. japonicum caused edema, chassis detachment, and separation of paired worms in vitro. Furthermore, dsRNA interference of SjGRM7 could significantly affect the development and egg production of male and female worms in vivo and alleviate the host liver granulomas and fibrosis. Finally, we examined the molecular mechanisms underlying the regulatory function of mGluR using RNA sequencing. The data suggest that SjGRM7 propagates its signals through the G protein-coupled receptor signaling pathway to promote nervous system development in S. japonicum. In conclusion, SjGRM7 is a potential target for anti-schistosomiasis. This study enables future research on the mechanisms of action of Schistosomiasis japonica drugs.

12.
Eur J Neurosci ; 56(11): 6055-6068, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161391

RESUMO

Cerebral ischaemia/reperfusion (I/R) injury is caused by blood flow restoration after an ischaemic insult, and effective treatments targeting I/R injury are still insufficient. Oxidative stress plays a critical role in the pathogenesis of cerebral I/R injury. This study investigated whether vitamin D receptor (VDR) could inhibit oxidative stress caused by cerebral I/R injury and explored the detailed mechanism. VDR was highly expressed in brain tissues of mice with cerebral I/R injury. Pretreatment with the active vitamin D calcitriol and synthetic vitamin D analogue paricalcitol (PC) reduced autophagy and apoptosis, improved neurological deficits and decreased infarct size in mice after cerebral I/R. Calcitriol or PC upregulated VDR expression to prevent cerebral I/R injury by affecting oxidative stress. Silencing of VDR reversed the protective effects of calcitriol or PC on brain tissues in mice with cerebral I/R. The bioinformatics analysis revealed that VDR interacted with SMAD family member 3 (SMAD3). It was validated through the chromatin immunoprecipitation assay that SMAD3 can bind to the VDR promoter and VDR can bind to the SMAD3 promoter. Collectively, these findings provide evidence that reciprocal activation between SMAD3 and VDR transcription factors defines vitamin D-mediated oxidative stress to prevent cerebral I/R injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Camundongos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico
13.
Chem Sci ; 13(14): 4058-4069, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35441000

RESUMO

Lithium-free anode dual-ion batteries have attracted extensive studies due to their simple configuration, reduced cost, high safety and enhanced energy density. For the first time, a novel Li-free DIB based on a carbon paper anode (Li-free CGDIB) is reported in this paper. Carbon paper anodes usually have limited application in DIBs due to their poor electrochemical performance. Herein, by using a lithium bis(fluorosulfonyl)imide (LiFSI)-containing electrolyte, the battery shows outstanding electrochemical performance with a capacity retention of 96% after 300 cycles at 2C with a stable 98% coulombic efficiency and 89% capacity retention after 500 cycles at 5C with a stable coulombic efficiency of 98.5%. Moreover, the electrochemical properties of the CGDIB were investigated with a variety of in situ characterization techniques, such as in situ EIS, XRD and online differential electrochemical mass spectrometry (OEMS). The multifunctional effect of the LiFSI additive on the electrochemical properties of the Li-free CGDIB was also systematically analyzed, including generating a LiF-rich interfacial film, prohibiting Li dendrite growth effectively and forming a defective structure of graphite layers. This design strategy and fundamental analysis show great potential and lay a theoretical foundation for facilitating the further development of DIBs with high energy density.

14.
Hum Mol Genet ; 31(16): 2779-2795, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35348668

RESUMO

Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.


Assuntos
Modelos Animais de Doenças , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Paraplegia Espástica Hereditária , Animais , Axônios/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Mutação , Paraplegia Espástica Hereditária/genética , Espastina/genética
16.
Neuron ; 109(21): 3456-3472.e8, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34506725

RESUMO

Neurons require mechanisms to maintain ATP homeostasis in axons, which are highly vulnerable to bioenergetic failure. Here, we elucidate a transcellular signaling mechanism by which oligodendrocytes support axonal energy metabolism via transcellular delivery of NAD-dependent deacetylase SIRT2. SIRT2 is undetectable in neurons but enriched in oligodendrocytes and released within exosomes. By deleting sirt2, knocking down SIRT2, or blocking exosome release, we demonstrate that transcellular delivery of SIRT2 is critical for axonal energy enhancement. Mass spectrometry and acetylation analyses indicate that neurons treated with oligodendrocyte-conditioned media from WT, but not sirt2-knockout, mice exhibit strong deacetylation of mitochondrial adenine nucleotide translocases 1 and 2 (ANT1/2). In vivo delivery of SIRT2-filled exosomes into myelinated axons rescues mitochondrial integrity in sirt2-knockout mouse spinal cords. Thus, our study reveals an oligodendrocyte-to-axon delivery of SIRT2, which enhances ATP production by deacetylating mitochondrial proteins, providing a target for boosting axonal bioenergetic metabolism in neurological disorders.


Assuntos
Proteínas Mitocondriais , Sirtuína 2 , Acetilação , Animais , Axônios/metabolismo , Metabolismo Energético , Camundongos , Proteínas Mitocondriais/metabolismo , Oligodendroglia/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
17.
Chem Commun (Camb) ; 57(78): 10055-10058, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34505847

RESUMO

Lithium (Li) dendrite growth seriously hinders the practical application of Li metal batteries. Here, we report molecular amidinothiourea (ATU) as a new electrolyte additive to regulate Li stripping/plating behaviors of Li metal anodes. The molecular ATU in the electrolyte can act as a shielding layer on the Li metal surface to suppress the decomposition of electrolytes as verified by XPS and adsorption energy calculation, which improves the electrochemical reversibility of the Li plating/stripping behaviors and inhibits lithium dendrite growth.

18.
Curr Biol ; 31(14): 3098-3114.e7, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34087103

RESUMO

Mitochondria supply adenosine triphosphate (ATP) essential for neuronal survival and regeneration. Brain injury and ischemia trigger acute mitochondrial damage and a local energy crisis, leading to degeneration. Boosting local ATP supply in injured axons is thus critical to meet increased energy demand during nerve repair and regeneration in adult brains, where mitochondria remain largely stationary. Here, we elucidate an intrinsic energetic repair signaling axis that boosts axonal energy supply by reprogramming mitochondrial trafficking and anchoring in response to acute injury-ischemic stress in mature neurons and adult brains. P21-activated kinase 5 (PAK5) is a brain mitochondrial kinase with declined expression in mature neurons. PAK5 synthesis and signaling is spatiotemporally activated within axons in response to ischemic stress and axonal injury. PAK5 signaling remobilizes and replaces damaged mitochondria via the phosphorylation switch that turns off the axonal mitochondrial anchor syntaphilin. Injury-ischemic insults trigger AKT growth signaling that activates PAK5 and boosts local energy supply, thus protecting axon survival and facilitating regeneration in in vitro and in vivo models. Our study reveals an axonal mitochondrial signaling axis that responds to injury and ischemia by remobilizing damaged mitochondria for replacement, thereby maintaining local energy supply to support central nervous system (CNS) survival and regeneration.


Assuntos
Axônios , Isquemia , Neurônios , Proteínas Proto-Oncogênicas c-akt , Quinases Ativadas por p21/metabolismo , Trifosfato de Adenosina , Animais , Reprogramação Celular , Células HEK293 , Humanos , Camundongos Knockout , Mitocôndrias , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Transdução de Sinais
19.
Front Cell Dev Biol ; 9: 678377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169075

RESUMO

Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post-lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post-lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.

20.
Autophagy ; 17(7): 1796-1798, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085599

RESUMO

Efficient degradation of autophagic vacuoles (AVs) generated at axon terminals by mature lysosomes enriched in the cell body represents an exceptional challenge that neurons face in maintaining cellular homeostasis. Here, we discuss our recent findings revealing a lipid-mediated impairment of lysosome transport to distal axons contributing to axonal AV accumulation in the neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC). Using transmission electron microscopy, we observed a striking buildup of endocytic and autophagic organelles in NPC dystrophic axons, indicating defects in the clearance of organelles destined for lysosomal degradation. We further revealed that elevated cholesterol on NPC lysosome membranes abnormally sequesters motor-adaptors of axonal lysosome delivery, resulting in impaired anterograde lysosome transport into distal axons that disrupts maturation of axonal AVs during their retrograde transport route. Together, our study demonstrates a mechanism by which altered membrane lipid composition compromises axonal lysosome trafficking and positioning and shows that lowering lysosomal lipid levels rescues lysosome transport into NPC axons, thus reducing axonal autophagic stress at early stages of NPC disease.


Assuntos
Autofagia , Lisossomos , Autofagossomos/metabolismo , Transporte Axonal , Lipídeos , Lisossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA