Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Food Res Int ; 181: 114094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448096

RESUMO

The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.


Assuntos
Camellia sinensis , Catequina , Chá , Comércio , DNA Bacteriano/genética
2.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472841

RESUMO

Aroma is an indispensable factor that substantially impacts the quality assessment of black tea. This study aims to uncover the dynamic alterations in the sweet and floral aroma black tea (SFABT) throughout various manufacturing stages using a comprehensive analytical approach integrating gas chromatography electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS), and gas chromatography-mass spectrometry (GC-MS). Notable alterations in volatile components were discerned during processing, predominantly during the rolling stage. A total of 59 typical volatile compounds were identified through GC-IMS, whereas 106 volatile components were recognized via GC-MS throughout the entire manufacturing process. Among them, 14 volatile compounds, such as linalool, ß-ionone, dimethyl sulfide, and 1-octen-3-ol, stood out as characteristic components responsible for SFABT with relative odor activity values exceeding one. This study serves as an invaluable theoretical platform for strategic controllable processing of superior-quality black tea.

3.
Foods ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472905

RESUMO

Green tea catechins (GTCs) are dietary polyphenols with broad bioactivities that undergo extensive microbial metabolism in the human gut. However, microbial-transferred metabolites and their health benefits are not fully understood. Herein, the microbial metabolism of GTCs by human fecal microbiota and dynamic alteration of the microbiota were integrally investigated via in vitro anaerobic fermentation. The results showed that the human gut microbiota exhibited a strong metabolic effect on GTCs via UHPLC-MS/MS analysis. A total of 35 microbial-transferred metabolites were identified, far more than were identified in previous studies. Among them, five metabolites, namely EGCG quinone, EGC quinone, ECG quinone, EC quinone, and mono-oxygenated EGCG, were identified for the first time in fermented GTCs with the human gut microbiota. Consequently, corresponding metabolic pathways were proposed. Notably, the antioxidant, α-amylase, and α-glucosidase inhibitory activities of the GTCs sample increased after fermentation compared to those of the initial unfermented sample. The results of the 16S rRNA gene sequence analysis showed that the GTCs significantly altered gut microbial diversity and enriched the abundancy of Eubacterium, Flavonifractor, etc., which may be further involved in the metabolisms of GTCs. Thus, these findings contribute to a better understanding of the interactions between GTCs and gut microbiota, as well as the health benefits of green tea consumption.

4.
J Agric Food Chem ; 72(13): 7230-7243, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494694

RESUMO

Long-term high-fat diet (HFD) will induce dysbiosis and a disturbance of intestinal homeostasis. Large yellow tea polysaccharide (LYP) has been shown to improve obesity-associated metabolic disease via modulation of the M2 polarization. However, the contribution of LYP to intestinal barrier impairment and improvement mechanisms in obesity caused by an HFD are still not clear. In this study, we evaluated the impacts of LYP on the mucosal barrier function and microbiota composition in HFD-feeding mice. Results exhibited that dietary LYP supplement could ameliorate the physical barrier function via maintaining intestinal mucosal integrity and elevating tight-junction protein production, strengthen the chemical barrier function via up-regulating the levels of glucagon-like peptide-1 and increasing mucin-producing goblet cell numbers, and enhance the intestinal immune barrier function though suppressing immune cell subsets and cytokines toward pro-inflammatory phenotypes. Moreover, LYP reshaped the constitution and metabolism of intestinal flora by enriching probiotics that produce short-chain fatty acids. Overall, LYP might be used as a critical regulator of intestinal homeostasis to improve host health by promoting gut barrier integrity, modulating intestinal immune response, and inhibiting bowel inflammation.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Obesidade/etiologia , Obesidade/genética , Polissacarídeos/farmacologia , Homeostase , Chá , Camundongos Endogâmicos C57BL
5.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302031

RESUMO

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Assuntos
Glutamatos , Amido Resistente , Zea mays , Zea mays/química , Amido Resistente/metabolismo , Ultrassom , Amido/química , Amilose/química , Digestão
6.
Food Sci Nutr ; 12(2): 776-785, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370081

RESUMO

Dietary habits and exercise play an important role in the well-being of human health. Currently, how long of drinking tea combined with exercise could efficiently ameliorate hepatic steatosis and obesity still needs to be investigated. Here, short-term and long-term green tea drinking combined with exercise were studied to improve hepatic steatosis and obesity in high-fat diet-induced (HF) mice. Our results showed that Yunkang 10 green tea (GT) combined with exercise (Ex) exhibited synergistic prevention effects on ameliorating hepatic steatosis and obesity. Especially, 22-week intervention with GT or Ex improved all symptoms of obesity, which indicated that long-term intervention exhibited profound preventive effects than the short term. Moreover, the combined intervention of 22 weeks inhibited the activation of NF-κB pathway and the expression of proinflammatory cytokines, which suggests that tea combined exercise may improve liver steatosis mainly by inhibiting inflammation. The key molecules for regulating lipid and glucose metabolism SCD1 were obviously downregulated, and GLU2 and PPARγ were significantly upregulated by GT and exercise in the liver of high-fat diet-induced mice. This study demonstrated that long-term intervention with GT and exercise effectively relieved hepatic steatosis and obesity complications by ameliorating hepatic inflammation, reducing lipid synthesis, and accelerating glucose transport.

7.
Free Radic Biol Med ; 211: 63-76, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092273

RESUMO

Ferroptosis, a new type of cell death accompanied by iron accumulation and lipid peroxidation, is implicated in the pathology of Parkinson's disease (PD), which is a prevalent neurodegenerative disorder that primarily occurred in the elderly population. Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea with known neuroprotective effects in PD patients. But whether EGCG-mediated neuroprotection against PD involves regulation of ferroptosis has not been elucidated. In this study, we established a PD model using PINK1 mutant Drosophila. Iron accumulation, lipid peroxidation and decreased activity of GPX, were detected in the brains of PD flies. Additionally, phenotypes of PD, including behavioral defects and dopaminergic neurons loss, were ameliorated by ferroptosis inhibitor ferrostatin-1 (Fer-1). Notably, the increased iron level, lipid peroxidation and decreased GPX activity in the brains of PD flies were relieved by EGCG. We found that EGCG exerted neuroprotection mainly by restoring iron homeostasis in the PD flies. EGCG inhibited iron influx by suppressing Malvolio (Mvl) expression and simultaneously promoted the upregulation of ferritin, the intracellular iron storage protein, leading to a reduction in free iron ions. Additionally, EGCG downregulated the expression of Duox and Nox, two NADPH oxidases that produce reactive oxygen species (ROS) and increased SOD enzyme activity. Finally, modulation of intracellular iron levels or regulation of oxidative stress by genetic means exerted great influence on PD phenotypes. As such, the results demonstrated that ferroptosis has a role in the established PD model. Altogether, EGCG has therapeutic potentials for treating PD by targeting the ferroptosis pathway, providing new strategies for the prevention and treatment of PD and other neurodegenerative diseases.


Assuntos
Proteínas de Drosophila , Ferroptose , Doenças Neurodegenerativas , Doença de Parkinson , Idoso , Animais , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Drosophila/metabolismo , Ferro/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Drosophila/genética
9.
Food Funct ; 14(24): 10770-10783, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37975193

RESUMO

Green tea is one of the main types of tea in China, and it has been widely consumed in the world. This study aims to investigate the potential mechanism by which the water extract of green tea (GTWE) may be effective in the treatment of alcohol-related hepatitis (ARH), utilizing a combination of network pharmacology, molecular docking, and experimental validation. Through network pharmacology analysis, seven active components and 45 potential targets were identified, with TLR4 being confirmed as the central target. Experimental findings demonstrate that GTWE exhibits significant efficacy in mitigating alcohol-induced liver inflammation and steatosis. Furthermore, the administration of GTWE has demonstrated significant efficacy in mitigating alcohol-induced intestinal inflammation and microbiota disturbance while concurrently restoring intestinal barrier function. Consequently, GTWE exhibits considerable potential as a pharmacological intervention and warrants further research and development as a lead compound for the treatment of ARH. Moreover, the prospective utilization of green tea in prolonged intakes exhibits potential as a prophylactic nutritive regimen against ARH.


Assuntos
Microbioma Gastrointestinal , Hepatite , Camundongos , Animais , Chá , Simulação de Acoplamento Molecular , Estudos Prospectivos , Extratos Vegetais/farmacologia , Inflamação
10.
Food Funct ; 14(20): 9337-9349, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37782075

RESUMO

Obesity-induced metabolic syndrome is strongly associated with infiltrated adipose tissue macrophages (ATMs). Large yellow tea, a traditional functional beverage in China, has been shown to possess anti-obesity effects. However, the effect of large yellow tea polysaccharides (LYPs) against obesity-associated metabolic syndrome and their underlying mechanisms remain unclear and must be extensively investigated. In this study, we investigated the ameliorative effect of LYPs on metabolic syndrome using a high-fat diet (HFD)-induced obese mouse model. Our results indicated that LYPs significantly alleviated weight gain, dyslipidemia, glucose intolerance, and insulin resistance. Moreover, LYPs restored the homeostasis of energy metabolism and pancreatic ß-cell function. Notably, LYPs promoted M2 polarization of ATMs by regulating the expression of genes and specific cytokines involved in the assembly and secretion of M2 polarization. The improved metabolic syndrome of LYPs might be associated with the modulation of macrophage polarization. These findings suggest that LYPs might be a novel potential therapeutic agent to prevent or treat HFD-induced metabolic disorders by regulating M2 polarization.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Camundongos , Animais , Síndrome Metabólica/metabolismo , Chá/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Obesidade/genética , Macrófagos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
11.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570841

RESUMO

Theaflavins (TFs), the primary bioactive components in black tea, are poorly absorbed in the small intestine. However, the biological activity of TFs does not match their low bioavailability, which suggests that the gut microbiota plays a crucial role in their biotransformation and activities. In this study, we aimed to investigate the biotransferred metabolites of TFs produced by the human gut microbiota and these metabolites' function. We profiled the microbial metabolites of TFs by in vitro anaerobic human gut microbiota fermentation using liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. A total of 17 microbial metabolites were identified, and their corresponding metabolic pathways were proposed. Moreover, full-length 16S rRNA gene sequence analysis revealed that the TFs altered the gut microbiota diversity and increased the relative abundance of specific members of the microbiota involved in the catabolism of the TFs, including Flavonifractor_plautii, Bacteroides_uniformis, Eubacterium_ramulus, etc. Notably, the antioxidant capacity of the TF sample increased after fermentation compared to the initial sample. In conclusion, the results contribute to a more comprehensive understanding of the microbial metabolites and antioxidant capacity of TFs.


Assuntos
Camellia sinensis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Cromatografia Líquida , Antioxidantes/farmacologia , Antioxidantes/análise , Chá/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Fezes/química , Espectrometria de Massas em Tandem , Camellia sinensis/genética
12.
Phytomedicine ; 120: 155030, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651754

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia and is characterized by amyloid-ß (Aß) peptides and hyperphosphorylated Tau proteins. Evidence indicates that AD and type 2 diabetes mellitus (T2DM) share pathophysiological characteristics, including impaired insulin sensitivity. Large-leaf yellow tea (LYT) has been widely recognized for its health benefits, and we previously found that LYT can improve peripheral insulin resistance. PURPOSE: This study aimed to investigate the protective effects and underlying mechanisms of LYT in the 5xFAD mouse model of AD. METHODS: HPLC and spectrophotometric methods determined the chemical composition of the LYT extract. 5xFAD mice were treated with LYT supplementation (2 and 4 mg/ml) in drinking water for six months. Barnes and Y mazes were used to evaluate cognitive function, and the open field test assessed anxiety-like behavior. Immunofluorescence, silver, and Nissl staining were used to evaluate the pathological effects of LYT extract. A FRET-based assay assessed ß-site APP cleavage enzyme 1 (BACE1) activity, ELISA measured Aß levels in the brain, and Western blot analyses explored protein expression levels. RESULTS: Our results revealed that LYT significantly attenuated memory impairment and anxiety levels and alleviated cerebral neural damage. A reduction of senile plaques was also observed in both the cortex and hippocampus. LYT significantly inhibited the activity of BACE1, which resulted in a lower Aß protein level. In addition, LYT enhanced insulin receptor substrate 1 (IRS-1)-mediated phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT), further suppressed glycogen synthase kinase-3ß (GSK3ß), and ultimately inhibited hyperphosphorylation of the protein Tau. The inhibitory effect of the LYT extract on the phosphorylation of Tau and BACE1 activity was dose-dependent. CONCLUSION: LYT improves cognitive ability and reduces Aß production by inhibiting BACE1 activity. Decreases of Tau protein hyperphosphorylation upon LYT treatment appear to be associated with the regulation of the IRS-1/PI3K/AKT/GSK3ß axis. Thus, the findings of this study also provide new evidence that LYT regulates insulin signaling pathways within the central nervous system.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Secretases da Proteína Precursora do Amiloide , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácido Aspártico Endopeptidases , Disfunção Cognitiva/tratamento farmacológico , Peptídeos beta-Amiloides , Chá
13.
Am J Cancer Res ; 13(4): 1407-1424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168333

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is the primary active ingredient in green tea and has been used for cancer prevention in clinical trials. The anti-tumor effects of EGCG stem from its ability to inhibit the activities of many oncoproteins, such as AKT, VEGFR, STAT3, and mutant p53. However, the clinical efficacy of EGCG is unsatisfactory. How to improve the anti-tumor effects of EGCG is an open question. Here we report that EGCG inhibits the tumor suppressive Hippo signaling pathway and activates downstream YAP in colorectal cancer (CRC) cells. Activation of YAP impedes the anti-tumor effects of EGCG. YAP blockade increases the sensitivity of CRC cells to EGCG treatment.

14.
J Nutr Biochem ; 118: 109349, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37085056

RESUMO

Tea polyphenol epigallocatechin-3-gallate (EGCG) has been widely recognized for antiobesity effects. However, the molecular mechanism of lipidomic pathway related to lipid-lowering effect of EGCG is still not well understood. The aim of this study was to investigate the effects and mechanism of EGCG activated hepatic lipidomic pathways on ameliorating obesity-related complications by using newly developed leptin receptor knockout (Lepr KO) rats. Results showed that EGCG supplementation (100 mg/kg body weight) significantly decreased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels both in the serum and liver, and significantly improved glucose intolerance. In addition, EGCG alleviated fatty liver development and restored the normal liver function in Lepr KO rats. Liver lipidomic analysis revealed that EGCG dramatically changes overall composition of lipid classes. Notably, EGCG significantly decreased an array of triglycerides (TGs) and diglycerides (DGs) levels. While EGCG increased 31 glycerophospholipid species and one sphingolipid species levels, such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylserines (PSs) and phosphatidylinositols (PIs) levels in the liver of Lepr KO rats. Moreover, 14 diversely regulated lipid species were identified as potential lipid biomarkers. Mechanistic analysis revealed that EGCG significantly activated the SIRT6/AMPK/SREBP1/FAS pathway to decrease DGs and TGs levels and upregulated glycerophospholipids synthesis pathways to increase glycerophospholipid level in the liver of Lepr KO rats. These findings suggested that the regulation of glycerolipids and glycerophospholipid homeostasis might be the key pathways for EGCG in ameliorating obesity-related complications in Lepr KO rats.


Assuntos
Catequina , Receptores para Leptina , Ratos , Animais , Receptores para Leptina/genética , Polifenóis/metabolismo , Lipidômica , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fígado/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Chá , Glicerofosfolipídeos/metabolismo
15.
Sci Rep ; 13(1): 3225, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828837

RESUMO

Our research group has recently found that radiation-induced airborne stress signals can be used for communication among Caenorhabditis elegans (C. elegans). This paper addresses the question of whether heat stress can also induce the emission of airborne stress signals to alert neighboring C. elegans and elicit their subsequent stress response. Here, we report that heat-stressed C. elegans produces volatile stress signals that trigger an increase in radiation resistance in neighboring unheated C. elegans. When several loss-of-function mutations affecting thermosensory neuron (AFD), heat shock factor-1, HSP-4, and small heat-shock proteins were used to test heat-stressed C. elegans, we found that the production of volatile stress signals was blocked, demonstrating that the heat shock response and ER pathway are involved in controlling the production of volatile stress signals. Our data further indicated that mutations affecting the DNA damage response (DDR) also inhibited the increase in radiation resistance in neighboring unheated C. elegans that might have received volatile stress signals, indicating that the DDR might contribute to radioadaptive responses induction by volatile stress signals. In addition, the regulatory pattern of signal production and action was preliminarily clarified. Together, the results of this study demonstrated that heat-stressed nematodes communicate with unheated nematodes via volatile stress signals.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Resposta ao Choque Térmico/genética , Mutação
16.
Comb Chem High Throughput Screen ; 26(2): 424-435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35379119

RESUMO

BACKGROUND: The clinical diagnosis of major depressive disorder (MDD) mainly relies on subjective assessment of depression-like behaviors and clinical examination. In the present study, we aimed to develop a novel diagnostic model for specially predicting MDD. METHODS: The human brain GSE102556 DataSet and the blood GSE98793 and GSE76826 Data Sets were downloaded from the Gene Expression Omnibus (GEO) database. We used a novel algorithm, random forest (RF) plus artificial neural network (ANN), to examine gene biomarkers and establish a diagnostic model of MDD. RESULTS: Through the "limma" package in the R language, 2653 differentially expressed genes (DEGs) were identified in the GSE102556 DataSet, and 1786 DEGs were identified in the GSE98793 DataSet, and a total of 100 shared DEGs. We applied GSE98793 TrainData 1 to an RF algorithm and thereby successfully selected 28 genes as biomarkers. Furthermore, 28 biomarkers were verified by GSE98793 TestData 1, and the performance of these biomarkers was found to be perfect. In addition, we further used an ANN algorithm to optimize the weight of each gene and employed GSE98793 TrainData 2 to build an ANN model through the neural net package by R language. Based on this algorithm, GSE98793 TestData 2 and independent blood GSE76826 were verified to correlate with MDD, with AUCs of 0.903 and 0.917, respectively. CONCLUSION: To the best of our knowledge, this is the first time that the classifier constructed via DEG biomarkers has been used as an endophenotype for MDD clinical diagnosis. Our results may provide a new entry point for the diagnosis, treatment, outcome prediction, prognosis and recurrence of MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Perfilação da Expressão Gênica , Algoritmo Florestas Aleatórias , Marcadores Genéticos , Redes Neurais de Computação
17.
Exp Clin Endocrinol Diabetes ; 130(10): 671-677, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36257297

RESUMO

Advanced glycation end products (AGEs), the compounds resulting from the non-enzymatic glycosylation between reducing sugars and proteins, are derived from food or produced de novo. Over time, more and more endogenous and exogenous AGEs accumulate in various organs such as the liver, kidneys, muscle, and bone, threatening human health. Among these organs, bone is most widely reported. AGEs accumulating in bone reduce bone strength by participating in bone structure formation and breaking bone homeostasis by binding their receptors to alter the proliferation, differentiation, and apoptosis of cells involved in bone remodeling. In this review, we summarize the research about the effects of AGEs on bone health and highlight their associations with bone health in diabetes patients to provide some clues toward the discovery of new treatment and prevention strategies for bone-related diseases caused by AGEs.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Densidade Óssea , Diabetes Mellitus/metabolismo , Osso e Ossos/metabolismo , Açúcares , Receptor para Produtos Finais de Glicação Avançada
18.
Foods ; 11(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230016

RESUMO

Huangshan Maofeng green tea (HMGT) is one of the most well-known green teas consumed for a thousand years in China. Research has demonstrated that consumption of green tea effectively improves metabolic disorders. However, the underlying mechanisms of obesity prevention are still not well understood. This study investigated the preventive effect and mechanism of long-term intervention of Huangshan Maofeng green tea water extract (HTE) on obesity-associated metabolic disorders in leptin receptor knockout (Lepr-/-) rats by using gut microbiota and hepatic lipidomics data. The Lepr-/- rats were administered with 700 mg/kg HTE for 24 weeks. Our results showed that HTE supplementation remarkably reduced excessive fat accumulation, as well as ameliorated hyperlipidemia and hepatic steatosis in Lepr-/- rats. In addition, HTE increased gut microbiota diversity and restored the relative abundance of the microbiota responsible for producing short chain fatty acids, including Ruminococcaceae, Faecalibaculum, Veillonellaceae, etc. Hepatic lipidomics analysis found that HTE significantly recovered glycerolipid and glycerophospholipid classes in the liver of Lepr-/- rats. Furthermore, nineteen lipid species, mainly from phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and triglycerides (TGs), were significantly restored increases, while nine lipid species from TGs and diglycerides (DGs) were remarkably recovered decreases by HTE in the liver of Lepr-/- rats. Our results indicated that prevention of obesity complication by HTE may be possible through maintaining homeostasis of gut microbiota and certain hepatic lipid classes.

19.
J Agric Food Chem ; 70(39): 12565-12576, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154025

RESUMO

A novel homogeneous polysaccharide (LYP-S3) that promotes the M2 polarization of macrophages was obtained from large yellow tea by a bioactivity-guided sequential isolation procedure and activity evaluation in the present study. Structural characterization revealed that LYP-S3 has an average molecular weight of 28.6 kDa and is composed of rhamnose, arabinose, galactose, glucose, and galacturonic acid at the molar ratio of 8.08:11.66:11.77:3.96:58.02. The main backbone of LYP-S3 consists of →4)-α-d-GalpA-6-OMe-(1→, ß-d-GalpA-(1→, →4)-ß-d-Galp-(→1, and →ß-d-Galp-(1→, and the branches are composed of α-l-Araf-(→1, →5)-α-l-Araf-(1→, →2,4)-ß-l-Rhap-(1→, →2)-ß-l-Rhap-(1→, and →4)-ß-d-Glcp-(1→. An in vitro bioactivity evaluation assay showed that LYP-S3 remarkably reduced the expression of M1 macrophage markers and increased the expression of M2 macrophage markers. In addition, LYP-S3 inhibited adipocyte differentiation and adipogenesis in 3T3-L1 adipocytes and blocked macrophage migration toward 3T3-L1 adipocytes in the cocultures of bone-marrow-derived monocytes and 3T3-L1 adipocytes. Furthermore, LYP-S3 promoted the M2 polarization of macrophages in cocultures. These findings suggested that LYP-S3 has a potential function in preventing inflammation and obesity.


Assuntos
Galactose , Ramnose , Arabinose , Glucose , Macrófagos , Polissacarídeos/química , Chá
20.
Food Res Int ; 159: 111639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940769

RESUMO

Predictable tea grading bears not only scientific merit, but also commercial value. Lu'an guapian green tea (LGGT) is one of the most famous green teas in China. Based on morphology and sensory flavour, LGGT was traditionally graded as first premium (FP), second premium (SP), first grade (FG), second grade (SG), third grade (TG) and summer grade (SuG). The chemical profiles and distinct metabolites distinguishing different grades of LGGT are yet to be defined, neither the grade related health benefits be evaluated. In present study, non-targeted metabolomics combined with chemometrics analysis showed that FP and SP, FG and SG exhibited high similarity, respectively. TG and SuG both exhibited great difference from the other grades. Therefore, LGGT could be regrouped into four grades. Furthermore, eight metabolites were identified and displayed grade related bio-markers of LGGT, which are gallic acid, catechin, gallocatechin, salicylic acid, theasinensin B, theasinensin C, kaempferol 3-(6''-rhanmnosylsoporoside) and l-linalool 3-[xylosyl-(1->6)-glucoside]. Quantitative analysis further confirmed that gallic acid, catechin, gallocatechin and salicylic acid were distinct grade-related metabolites. In vitro and in vivo data showed that methanol-extracts of higher grades LGGT exhibited more potent α-amylase and α-glucosidase inhibitory activity and hypoglyceamia effect than that of lower grades.


Assuntos
Catequina , Hipoglicemia , Catequina/análise , Ácido Gálico/análise , Humanos , Hipoglicemiantes/análise , Ácido Salicílico , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA