Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci China Life Sci ; 67(8): 1601-1619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761356

RESUMO

Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Cálcio , Homeostase , Infarto do Miocárdio , Miócitos Cardíacos , RNA Longo não Codificante , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Miócitos Cardíacos/metabolismo , Masculino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Metilação , Humanos
2.
Can J Cardiol ; 40(4): 710-725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081511

RESUMO

BACKGROUND: Timely and proper suppression of inflammation can effectively reduce myocardial injury and promote the postmyocardial infarction (post-MI) wound-healing process. We have previously found that cardiac conduction regulatory RNA (CCRR), a long noncoding RNA (lncRNA) transcribed by the gene located on chromosome 9, with abundant expression in the heart, elicits antiarrhythmic effects in heart failure, and this is a continuing study on the role of CCRR in MI. METHODS: CCRR was overexpressed in CCRR transgenic mice or after injection of adeno-associated virus-9 (AAV-9). MI surgery was performed, and cardiac function was assessed in vivo by echocardiography, followed by histologic analyses. Western blot analysis and qRT-PCR were performed to investigate the effects of CCRR on macrophages, cardiomyocytes, and cardiomyocytes cocultured with macrophages. Through microarray analysis and RNA-binding protein immunoprecipitation (RIP) and other related techniques were also employed to study the effects of CCRR on Toll-like receptor (TLR)2 and TLR4. RESULTS: We found that CCRR level was significantly decreased with increases in proinflammatory cytokines and activation of the TLR signalling pathway in the heart of the 3-day MI mice. CCRR overexpression downregulated TLR2 and TLR4 in MI and effectively inhibited the inflammatory responses in primary cardiomyocytes and macrophages cultured under hypoxic conditions. Downregulation of CCRR induced excessive inflammatory responses by activating the TLR signalling pathway. CCRR acted by suppressing TLR2 and TLR4 to inhibit the secretion of proinflammatory factors to reduce infarct size, thereby improving cardiac function. CONCLUSIONS: CCRR protected cardiomyocytes against MI injury by suppressing inflammatory response through targeting the TLR signalling pathway.


Assuntos
Infarto do Miocárdio , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA