Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Biol Macromol ; 217: 219-228, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839949

RESUMO

To investigate the mechanism of Silent information regulator 1 (SIRT1) regulation of DNA methylation and thus the expression of synaptic plasticity-related genes induced by lead (Pb) exposure, the early-life Sprague-Dawley rats and PC12 cells were used to establish Pb exposure models and treated with SIRT1 agonists (resveratrol and SRT1720). In vivo results demonstrated that Pb exposure increased the expression of DNMTs, MeCP2, PP1 and cleaved caspase3, decreased the expression of SIRT1, BDNF and RELIN and altered DNA methylation levels of synaptic plasticity genes. Moreover, we observed marked pathological damage in the hippocampal CA1 region of the 0.2 % Pb-exposure group. After treatment with resveratrol, the effects of Pb exposure on the expression of the above molecules and pathological features were significantly ameliorated in the hippocampus of rats. In vitro results showed that after the treatment with SRT1720, the expression of SIRT1 was activated and thus reversed the effect on DNMTs, MeCP2, apoptosis and synaptic plasticity-related genes and their DNA methylation levels induced by Pb exposure. In conclusion, we validated the important protective role of SIRT1 in neurotoxicity induced by Pb exposure through in vivo and in vitro experiments, providing potential therapeutic targets for the treatment and prevention of brain damage.


Assuntos
Chumbo , Sirtuína 1 , Animais , Metilação de DNA , Hipocampo/metabolismo , Chumbo/metabolismo , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo
2.
Ecotoxicol Environ Saf ; 222: 112511, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273848

RESUMO

This study examined the neuroprotective properties of resveratrol (Res) and its target sirtuin1 (SIRT1) against lead (Pb)-mediated toxicity and discovered that both resveratrol treatment and SIRT1 overexpression restored blocked autophagic flux as well as reduced ß-amyloid (Aß) contents. Four-week-old male C57BL/6 mice were employed to consumed 0.2% Pb(Ac)2 solution or deionized water for 3 months followed by 12 months of Res (50 mg/kg BW) or vehicle gavage. In in vitro study, SH-SY5Y cells were pretreated with the SIRT1 activator SRT1720 (2 µM) or the inhibitor EX527 (2 µM) for 2 h, then 25 µM of Pb(Ac)2 was added and incubated for 48 h. Western blotting, RT-qPCR, enzyme-linked immunosorbent assay (ELISA), and Lyso-Tracker Red Staining were next used to estimate the potential alterations of the autophagic pathway as well as BACE1-mediated amyloid processing in response to Pb exposure, respectively. Our data revealed that Res treatment or SIRT1 activation resisted the induction of autophagy by Pb exposure through inhibition of LC3 and Beclin-1 expression and promoted the degradation of Aß and Tau phosphorylation. Besides, the SIRT1 activator (SRT1720) downregulated the expression of BACE1, the rate-limiting enzyme for Aß production, by inhibiting the activation of nuclear factor-κB (NF-κB) in Pb-treated SH-SY5Y cells, which resulted in reduced Aß production. Collectively, we verified the role of Res-SIRT1-autophagy as well as the SIRT1-NF-κB-BACE1 pathway in Pb-induced neuronal cell injury by in vivo or in vitro models. Our findings further elucidate the important role of SIRT1 and Res in counteracting Pb neurotoxicity, which may provide new interventions and targets for the subsequent treatment of neurodegenerative diseases.


Assuntos
Fármacos Neuroprotetores , Sirtuína 1 , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/farmacologia , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/farmacologia , Autofagia , Chumbo/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Resveratrol/farmacologia , Sirtuína 1/genética
3.
Environ Health ; 19(1): 104, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008482

RESUMO

BACKGROUND: Although prior studies showed a correlation between environmental manganese (Mn) exposure and neurodevelopmental disorders in children, the results have been inconclusive. There has yet been no consistent biomarker of environmental Mn exposure. Here, we summarized studies that investigated associations between manganese in biomarkers and childhood neurodevelopment and suggest a reliable biomarker. METHODS: We searched PubMed and Web of Science for potentially relevant articles published until December 31th 2019 in English. We also conducted a meta-analysis to quantify the effects of manganese exposure on Intelligence Quotient (IQ) and the correlations of manganese in different indicators. RESULTS: Of 1754 citations identified, 55 studies with 13,388 subjects were included. Evidence from cohort studies found that higher manganese exposure had a negative effect on neurodevelopment, mostly influencing cognitive and motor skills in children under 6 years of age, as indicated by various metrics. Results from cross-sectional studies revealed that elevated Mn in hair (H-Mn) and drinking water (W-Mn), but not blood (B-Mn) or teeth (T-Mn), were associated with poorer cognitive and behavioral performance in children aged 6-18 years old. Of these cross-sectional studies, most papers reported that the mean of H-Mn was more than 0.55 µg/g. The meta-analysis concerning H-Mn suggested that a 10-fold increase in hair manganese was associated with a decrease of 2.51 points (95% confidence interval (CI), - 4.58, - 0.45) in Full Scale IQ, while the meta-analysis of B-Mn and W-Mn generated no such significant effects. The pooled correlation analysis revealed that H-Mn showed a more consistent correlation with W-Mn than B-Mn. Results regarding sex differences of manganese associations were inconsistent, although the preliminary meta-analysis found that higher W-Mn was associated with better Performance IQ only in boys, at a relatively low water manganese concentrations (most below 50 µg/L). CONCLUSIONS: Higher manganese exposure is adversely associated with childhood neurodevelopment. Hair is the most reliable indicator of manganese exposure for children at 6-18 years of age. Analysis of the publications demonstrated sex differences in neurodevelopment upon manganese exposure, although a clear pattern has not yet been elucidated for this facet of our study.


Assuntos
Desenvolvimento Infantil/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Manganês/efeitos adversos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Biomarcadores/análise , Criança , Cabelo/química , Humanos , Inteligência/efeitos dos fármacos
4.
J Neurochem ; 147(6): 831-848, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30152072

RESUMO

For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD-like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose- and time-dependently blocks the protein translation of amyloid precursor protein (APP) and heavy-chain Ferritin (H-Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H-Ferritin are post-transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5'-untranslated regions (5'-UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5'-UTR-activity of APP and H-Ferritin, presumably via increased iron responsive proteins-iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+ -specific probes (RhoNox-1 and IP-1) and ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS), we show that loss of the protective axis of APP and H-Ferritin resulted in unchecked accumulation of redox-active ferrous iron (Fe2+ ) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn-induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn-mediated suppression of APP and H-Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn-induced neurotoxicity is partly attributable to the translational inhibition of APP and H-Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Apoferritinas/antagonistas & inibidores , Ferro/metabolismo , Intoxicação por Manganês/metabolismo , Regiões 5' não Traduzidas , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apoferritinas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Modificação Traducional de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Nutrients ; 10(7)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954131

RESUMO

Several B vitamins are essential in the one-carbon metabolism pathway, which is central to DNA methylation, synthesis, and repair. Moreover, an imbalance in this pathway has been linked to certain types of cancers. Here, we performed a meta-analysis in order to investigate the relationship between the intake of four dietary one-carbon metabolism-related B vitamins (B2, B6, folate, and B12) and the risk of esophageal cancer (EC). We searched PubMed, Web of Science, and Embase for relevant studies published through 1 March 2018. The odds ratio (OR) with 95% confidence interval (CI) for the highest versus the lowest level of each dietary B vitamin was then calculated. From 21 articles reporting 26 studies including 6404 EC cases and 504,550 controls, we found an inverse correlation between the consumption of vitamin B6 and folate and the risk of EC; this association was specific to the US, Europe, and Australia, but was not found in Asia. A dose-response analysis revealed that each 100 μg/day increase in folate intake reduced the risk of EC by 12%. Moreover, each 1 mg/day increase in vitamin B6 intake decreased the risk of EC by 16%. Surprisingly, we found that each 1 μg/day increase in vitamin B12 intake increased the risk of esophageal adenocarcinoma by 2%, particularly in the US and Europe, suggesting both geographic and histological differences. Together, our results suggest that an increased intake of one-carbon metabolism-related B vitamins may protect against EC, with the exception of vitamin B12, which should be consumed in moderation.


Assuntos
Adenocarcinoma/prevenção & controle , Anticarcinógenos/administração & dosagem , Dieta , Neoplasias Esofágicas/prevenção & controle , Comportamento de Redução do Risco , Complexo Vitamínico B/administração & dosagem , Adenocarcinoma/epidemiologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticarcinógenos/efeitos adversos , Metilação de DNA , Reparo do DNA , Replicação do DNA , DNA de Neoplasias/genética , Dieta/efeitos adversos , Relação Dose-Resposta a Droga , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Razão de Chances , Fatores de Proteção , Recomendações Nutricionais , Medição de Risco , Fatores de Risco , Vitamina B 12/administração & dosagem , Vitamina B 12/efeitos adversos , Complexo Vitamínico B/efeitos adversos , Adulto Jovem
6.
Cell Discov ; 3: 17025, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28751976

RESUMO

SLC39A14 (also known as ZIP14), a member of the SLC39A transmembrane metal transporter family, has been reported to mediate the cellular uptake of iron and zinc. Recently, however, mutations in the SLC39A14 gene have been linked to manganese (Mn) accumulation in the brain and childhood-onset parkinsonism dystonia. It has therefore been suggested that SLC39A14 deficiency impairs hepatic Mn uptake and biliary excretion, resulting in the accumulation of Mn in the circulation and brain. To test this hypothesis, we generated and characterized global Slc39a14-knockout (Slc39a14-/- ) mice and hepatocyte-specific Slc39a14-knockout (Slc39a14fl/fl;Alb-Cre+ ) mice. Slc39a14-/- mice develop markedly increased Mn concentrations in the brain and several extrahepatic tissues, as well as motor deficits that can be rescued by treatment with the metal chelator Na2CaEDTA. In contrast, Slc39a14fl/fl;Alb-Cre+ mice do not accumulate Mn in the brain or other extrahepatic tissues and do not develop motor deficits, indicating that the loss of Slc39a14 expression selectively in hepatocytes is not sufficient to cause Mn accumulation. Interestingly, Slc39a14fl/fl;Alb-Cre+ mice fed a high Mn diet have increased Mn levels in the serum, brain and pancreas, but not in the liver. Taken together, our results indicate that Slc39a14-/- mice develop brain Mn accumulation and motor deficits that cannot be explained by a loss of Slc39a14 expression in hepatocytes. These findings provide insight into the physiological role that SLC39A14 has in maintaining Mn homeostasis. Our tissue-specific Slc39a14-knockout mouse model can serve as a valuable tool for further dissecting the organ-specific role of SLC39A14 in regulating the body's susceptibility to Mn toxicity.

7.
Front Physiol ; 7: 527, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877136

RESUMO

Microcystin-LR (MC-LR) is a ubiquitous peptide that exhibits strong reproductive toxicity, although the mechanistic basis for such toxicity remains largely unknown. The present study was conducted to investigate the mechanisms underlying the adverse effects of exposure to MC-LR in Chinese hamster ovary (CHO) cells. The results showed that MC-LR inhibited the in vitro proliferation of CHO cells significantly, with an IC50 of 10 µM. Moreover, MC-LR-treated CHO cells revealed strong induction of cell cycle arrest and apoptosis. Additionally, exposure of CHO cells to MC-LR resulted in excess reactive oxygen species production and intracellular calcium release, with resultant endoplasmic reticulum stress (ERs). There was also extensive accumulation of autophagic vacuoles with the highest concentration of MC-LR used (10 µM). Furthermore, the expression of ERs (GRP78, ATF-6, PERK, IRE1, CHOP) and autophagy (Beclin1 and LC3II) proteins was increased, with concomitantly reduced expression of LC3I suggesting that ERs and autophagy were induced in CHO cells by MC-LR treatment. Conversely, pretreatment of CHO cells with 4-Phenyl butyric acid, the ERs inhibitor reduced the MC-LR-induced apoptotic cell death and cellular autophagy as evidenced by the reduced expression of Beclin1 and LC3II. Similarly, MC-LR treatment in combination with an autophagy inhibitor (3-methyladenine) increased apoptotic cell death compared with MC-LR alone, and induced ERs via upregulating ERs proteins. The overall results indicated that activation of ERs and autophagy are both associated with MC-LR-induced apoptosis in CHO cells. ERs may be a trigger of autophagy in this process.

8.
Front Physiol ; 7: 397, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27667976

RESUMO

Microcystins (MCs), the secondary metabolites of blue-green algae, are ubiquitous and major cyanotoxin contaminants. Besides the hepatopancreas/liver, the reproductive system is regarded as the most important target organ for MCs. Although reactive oxygen species (ROS) have been implicated in MCs-induced reproductive toxicity, the role of MCs in this pathway remains unclear. In the present study, Sertoli cells were employed to investigate apoptotic death involved in male reproductive toxicity of microcystin-LR (MC-LR). After exposure to various concentrations of MC-LR for 24 h, the growth of Sertoli cells was concentration-dependently decreased with an IC50 of ~32 µg/mL. Mitochondria-mediated apoptotic changes were observed in Sertoli cells exposed to 8, 16, and 32 µg/mL MC-LR including the increased expression of caspase pathway proteins, collapse of mitochondrial membrane potential (MMP), and generation of ROS. Pretreatment with a global caspase inhibitor was found to depress the activation of caspases, and eventually increased the survival rate of Sertoli cells, implying that the mitochondrial caspases pathway is involved in MC-LR-induced apoptosis. Furthermore, N-acetyl-l-cysteine attenuated the MC-LR-induced intracellular ROS generation, MMP collapse and cytochrome c release, resulting in the inhibition of apoptosis. Taken together, the observed results suggested that MC-LR induced apoptotic death of Sertoli cells by the activation of mitochondrial caspases cascade, while its effects on the ROS-mediated signaling pathway may contribute toward the initiation of mitochondrial dysfunction.

10.
Sci Rep ; 5: 7645, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25561289

RESUMO

Epigenetic regulations including DNA methylation and demethylation play critical roles in neural development. However, whether DNA methylation and demethylation may play a role in neuronal cell death remains largely unclear. Here we report that the blockade of DNA methyltransferase inhibits apoptosis of cerebellar granule cells and cortical neurons in response to oxidative stress. We found that knockdown of ten-eleven translocation methylcytosine dioxygenase (Tet1), a critical enzyme for DNA demethylation, significantly increase apoptosis of cerebellar granule cells induced by hydrogen peroxide. Moreover, cerebellar granule cells from tet1(null) mice appeared to be more sensitive to oxidative stress, suggesting the critical role of Tet1 in neuronal cell death. We further showed that the expression of Klotho, an antiaging protein, in cerebellar granule cells is tightly regulated by DNA methylation. Finally, we found that knockdown of Klotho diminished the rescue effects of DNA methyltransferase inhibitors and Tet1 on neuronal cell death induced by oxidative stress. Our work revealed the role of Tet1-mediated DNA demethylation on neuronal protection against oxidative stress and provided the molecular mechanisms underlying the epigenetic regulation of neuronal cell death, suggesting the role of Klotho in regulating neuronal cell death in response to oxidative stress.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Decitabina , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronidase/antagonistas & inibidores , Glucuronidase/genética , Glucuronidase/metabolismo , Peróxido de Hidrogênio/toxicidade , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
11.
J Neurochem ; 128(6): 798-806, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24188180

RESUMO

Methyl CpG binding protein 2 (MeCP2) binds to methylated DNA and acts as a transcriptional repressor. Mutations of human MECP2 gene lead to Rett syndrome, a severe neural developmental disorder. Here, we report that the MeCP2 protein can be modified by covalent linkage to small ubiquitin-like modifier (SUMO) and SUMOylation at lysine 223 is necessary for its transcriptional repression function. SUMOylation of MeCP2 is required for the recruitment of histone deacetylase complexes 1/2 complex. Mutation of MeCP2 lysine 223 to arginine abolishes its suppression of gene expression in mouse primary cortical neurons. Significantly, mutation of MeCP2 K223 site leads to developmental deficiency of rat hippocampal synapses in vitro and in vivo. Thus, the SUMOylation of MeCP2 at K223 is a critical switch for transcriptional repression and plays a crucial function in regulating synaptic development in the central nervous system.


Assuntos
Hipocampo/fisiologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sumoilação/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hipocampo/crescimento & desenvolvimento , Histona Desacetilases/metabolismo , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/fisiologia
12.
J Genet Genomics ; 40(7): 339-46, 2013 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-23876774

RESUMO

The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.


Assuntos
Encéfalo/crescimento & desenvolvimento , Epigênese Genética , Transtornos Mentais/genética , Animais , Encéfalo/metabolismo , DNA Metiltransferase 3A , Humanos , Transtornos Mentais/fisiopatologia , Plasticidade Neuronal/genética , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA