Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523991

RESUMO

Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)2O3 alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap ß-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date.

2.
Nature ; 555(7695): 183-189, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516996

RESUMO

Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA