Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Exp Ther Med ; 25(3): 106, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36778043

RESUMO

Accumulating evidence shows that long non-coding RNAs (lncRNAs) are widely involved in cellular processes of myocardial ischemia/reperfusion (I/R). The present study investigated the functions of lncRNA SNHG16 in myocardial I/R and the mechanism mediated by SNHG16. The myocardial I/R rat and cell model and hypoxia/reoxygenation injury (H/R) models of H9C2 cardiomyocytes were established to detect the expression of SNHG16. Cell Counting Kit-8, flow cytometric and western blot assays were conducted to detect cell viability, apoptosis and protein expression. Myocardial cell apoptosis was assessed by TUNEL staining. Dual-luciferase gene reporter was applied to determine the interaction between the molecules. The expressions of SNHG16 were upregulated in myocardial I/R injury models. Inhibition of SNHG16 relieved myocardial I/R injury in vivo and in vitro silencing of SNHG16 alleviated H/R induced cardiomyocyte apoptosis. To explore the regulatory mechanism, it was discovered that SNHG16 directly interacted with miR-183, while forkhead box O1 (FoxO1) was a target of microRNA (miR)-183. Findings from rescue assays revealed that miR-183 inhibitor and upregulation of FOXO1 can rescue the effect of sh-SNHG16 on H/R-induced cardiomyocyte apoptosis. The results indicated that the lncRNA SNHG16/miR-183/FOXO1 axis exacerbated myocardial cell apoptosis in myocardial I/R injury, suggesting SNHG16 as a potential therapeutic target for myocardial I/R injury.

2.
Exp Biol Med (Maywood) ; 246(23): 2480-2486, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342552

RESUMO

Timely prediction of the risk of heart failure in acute myocardial infarction patients is critical for better prognosis. This article aims to evaluate the predictive value of serum soluble growth stimulation expressed gene 2 (sST2) and interleukin-33 in patients with acute myocardial infarction complicated by heart failure. A total of 42 healthy controls and 144 acute myocardial infarction patients were recruited in the study. According to Killip cardiac function classification as the basis for concurrent heart failure, they were distributed into non-heart failure group (n = 76) and heart failure group (n = 68). ELISA was utilized to determine the serum sST2 and interleukin-33 levels, and the diagnostic efficiency was evaluated by receiver operating characteristics curve. sST2 and interleukin-33 levels in patients with acute myocardial infarction were significantly increased when compared with normal healthy controls, and were further enhanced in the heart failure group. With the increased Killip cardiac function classification, interleukin-33 and sST2 levels were gradually elevated. Multivariate analysis indicated that interleukin-33 and sST2 could be used as independent predictors for heart failure combined with acute myocardial infarction.


Assuntos
Insuficiência Cardíaca/sangue , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Interleucina-33/sangue , Infarto do Miocárdio/sangue , Idoso , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/patologia , Prognóstico
3.
Gen Physiol Biophys ; 39(5): 461-470, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33084599

RESUMO

Globally, acute myocardial infarction (AMI) is a serious condition affecting millions of individuals. While AMI therapy improves blood flow during surgery, reperfusion-induced injury may also occur, leading to secondary cardiac damage or even death. Here, we investigated miR-129-5p in myocardial ischemia-reperfusion (I/R) injury in rats, to explore reperfusion-related molecular mechanisms in myocardium. We used Sprague Dawley rats to establish a myocardial I/R model, with agomiR-129-5p injection, and used rat cardiomyocytes (H9c2) treated with anoxia-reoxygenation (A/R) to mimic myocardial I/R injury in vitro. A dual-luciferase reporter assay determined miR-129-5p binding to high mobility group box-1 (HMGB1) in H9c2 cells. We showed that exogenous miR-129-5p restored cardiac function indices, alleviated cardiac injury, relieved inflammatory effects and reduced infarct size and cell apoptosis in rat myocardium after I/R treatment. Elevated miR-129-5p induced a reduction in HMGB1 expression in rat I/R myocardium. miR-129-5p also targeted HMGB1, and negatively regulated its expression in H9c2 cells. Moreover, miR-129-5p overexpression in the cardiomyocytes reduced cell apoptosis and recovered cell viability after A/R injury, which was reversed by subsequent HMGB1 overexpression. These findings suggest miR-129-5p plays a cardioprotective role in ameliorating myocardial I/R injury in rats, by negatively targeting HMGB1. This mechanism provides new insights into the treatment of myocardium reperfusion-related damage.


Assuntos
Proteína HMGB1/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica , Miocárdio , Animais , Linhagem Celular , Traumatismo por Reperfusão Miocárdica/genética , Ratos , Ratos Sprague-Dawley
4.
Int J Nanomedicine ; 15: 2647-2658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368046

RESUMO

PURPOSE: Myocardial ischemia-reperfusion injury primarily causes myocardial infarction (MI), which is manifested by cell death. Angiogenesis is essential for repair and regeneration in cardiac tissue after MI. In this study, we aimed to investigate the effect of exosomes derived from the serum of MI patients in angiogenesis and its related mechanism. PATIENTS AND METHODS: Exosomes, isolated from serum, were collected from MI (MI-exosome) and control (Con-exosome) patients. After coculturing with human umbilical vein endothelial cells, MI-exosome promoted cell proliferation, migration, and tube formation. RESULTS: The results revealed that the production and release of MI-exosome were associated with cardiomyocytes. Moreover, microarray assays demonstrated that miRNA-143 was significantly decreased in MI-exosome. Meanwhile, the overexpression and knockdown of miRNA-143 could inhibit and enhance angiogenesis, respectively. Furthermore, the effect of exosomal miRNA-143 on angiogenesis was mediated by its targeting gene, insulin-like growth factor 1 receptor (IGF-IR), and was associated with the production of nitric oxide (NO). CONCLUSION: Taken together, exosomes derived from the serum of patients with MI promoted angiogenesis through the IGF-IR/NO signaling pathway. The results provide novel understanding of the function of exosomes in MI.


Assuntos
Vasos Coronários/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/sangue , Neovascularização Fisiológica , Receptor IGF Tipo 1/metabolismo , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Óxido Nítrico/biossíntese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA