Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0014524, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38578096

RESUMO

The bacterium Natranaerobius thermophilus is an extremely halophilic alkalithermophile that can thrive under conditions of high salinity (3.3-3.9 M Na+), alkaline pH (9.5), and elevated temperature (53°C). To understand the molecular mechanisms of salt adaptation in N. thermophilus, it is essential to investigate the protein, mRNA, and key metabolite levels on a molecular basis. Based on proteome profiling of N. thermophilus under 3.1, 3.7, and 4.3 M Na+ conditions compared to 2.5 M Na+ condition, we discovered that a hybrid strategy, combining the "compatible solute" and "salt-in" mechanisms, was utilized for osmotic adjustment dur ing the long-term salinity adaptation of N. thermophilus. The mRNA level of key proteins and the intracellular content of compatible solutes and K+ support this conclusion. Specifically, N. thermophilus employs the glycine betaine ABC transporters (Opu and ProU families), Na+/solute symporters (SSS family), and glutamate and proline synthesis pathways to adapt to high salinity. The intracellular content of compatible solutes, including glycine betaine, glutamate, and proline, increases with rising salinity levels in N. thermophilus. Additionally, the upregulation of Na+/ K+/ H+ transporters facilitates the maintenance of intracellular K+ concentration, ensuring cellular ion homeostasis under varying salinities. Furthermore, N. thermophilus exhibits cytoplasmic acidification in response to high Na+ concentrations. The median isoelectric points of the upregulated proteins decrease with increasing salinity. Amino acid metabolism, carbohydrate and energy metabolism, membrane transport, and bacterial chemotaxis activities contribute to the adaptability of N. thermophilus under high salt stress. This study provides new data that support further elucidating the complex adaptation mechanisms of N. thermophilus under multiple extremes.IMPORTANCEThis study represents the first report of simultaneous utilization of two salt adaptation mechanisms within the Clostridia class in response to long-term salinity stress.


Assuntos
Proteínas de Bactérias , Potássio , Estresse Salino , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adaptação Fisiológica , Salinidade
3.
Environ Microbiol ; 25(10): 1967-1987, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37271582

RESUMO

The moderate halophilic bacterium Alkalicoccus halolimnae BZ-SZ-XJ29T exhibits optimum growth over a wide range of NaCl concentrations (8.3-12.3%, w/v; 1.42-2.1 mol L-1 ). However, its adaptive mechanisms to cope with high salt-induced osmotic stress remain unclear. Using TMT-based quantitative proteomics, the cellular proteome was assessed under low (4% NaCl, 0.68 mol L-1 NaCl, control (CK) group), moderate (8% NaCl, 1.37 mol L-1 NaCl), high (12% NaCl, 2.05 mol L-1 NaCl), and extremely high (16% NaCl, 2.74 mol L-1 NaCl) salinity conditions. Digital droplet PCR confirmed the transcription of candidate genes related to salinity. A. halolimnae utilized distinct adaptation strategies to cope with different salinity conditions. Mechanisms such as accumulating different amounts and types of compatible solutes (i.e., ectoine, glycine betaine, glutamate, and glutamine) and the uptake of glycine betaine and glutamate were employed to cope with osmotic stress. Ectoine synthesis and accumulation were critical to the salt adaptation of A. halolimnae. The expression of EctA, EctB, and EctC, as well as the intracellular accumulation of ectoine, significantly and consistently increased with increasing salinity. Glycine betaine and glutamate concentrations remained constant under the four NaCl concentrations. The total content of glutamine and glutamate maintained a dynamic balance and, when exposed to different salinities, may play a role in low salinity-induced osmoadaptation. Moreover, cellular metabolism was severely affected at high salt concentrations, but the synthesis of amino acids, carbohydrate metabolism, and membrane transport related to haloadptation was preserved to maintain cytoplasmic concentration at high salinity. These findings provide insights into the osmoadaptation mechanisms of moderate halophiles and can serve as a theoretical underpinning for industrial production and application of compatible solutes.


Assuntos
Diamino Aminoácidos , Salinidade , Betaína/metabolismo , Cloreto de Sódio/metabolismo , Glutamina , Proteômica , Pressão Osmótica , Diamino Aminoácidos/metabolismo , Glutamatos/metabolismo
4.
Theriogenology ; 205: 50-62, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086585

RESUMO

MicroRNAs (miRNAs) are involved in many physiological processes such as signal transduction, cell proliferation and apoptosis. Many studies have shown that miRNAs can regulate the process of follicular development. Our previous studies found that the expression of miR-29c-5p in buffalo atretic follicles was much higher than that in healthy follicles, suggesting that this miRNA may participate in the process of buffalo follicular atresia. In this study, we aim to explore to the role and molecular mechanisms of miR-29c-5p on the functions of buffalo granulosa cells (GCs). GCs cultured in vitro were transfected with miR-29c-5p mimics and its inhibitor, respectively, and it was found that the mimics significantly increased the apoptotic rate of GCs. They also inhibited the proliferation of GCs and the secretion of steroid hormones. The effect of the inhibitor was opposite to that of the mimics. MiR-29c-5p was subsequently shown to target the inhibin subunit beta A, (INHBA). Overexpression of INHBA could promote the production of activin A and inhibin A, and then reverse the effect of miR-29c-5p on buffalo GCs. In conclusion, these results suggest that miR-29c-5p promotes apoptosis and inhibits proliferation and steroidogenesis by targeting INHBA in buffalo GCs. This may ultimately promote atresia in buffalo follicles.


Assuntos
Búfalos , MicroRNAs , Animais , Feminino , Apoptose/genética , Búfalos/genética , Proliferação de Células , Atresia Folicular/genética , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , Folículo Ovariano
5.
Extremophiles ; 27(1): 8, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976376

RESUMO

Droplet digital PCR (ddPCR) is being increasingly adopted for gene detection and quantification because of its higher sensitivity and specificity. According to previous observations and our laboratory data, it is essential to use endogenous reference genes (RGs) when investigating gene expression at the mRNA level under salt stress. This study aimed to select and validate suitable RGs for gene expression under salt stress using ddPCR. Six candidate RGs were selected based on the tandem mass tag (TMT)-labeled quantitative proteomics of Alkalicoccus halolimnae at four salinities. The expression stability of these candidate genes was evaluated using statistical algorithms (geNorm, NormFinder, BestKeeper and RefFinder). There was a small fluctuation in the cycle threshold (Ct) value and copy number of the pdp gene. Its expression stability was ranked in the vanguard of all algorithms and was the most suitable RG for quantification of expression by both qPCR and ddPCR of A. halolimnae under salt stress. Single RG pdp and RG combinations were used to normalize the expression of ectA, ectB, ectC and ectD under four salinities. The present study constitutes the first systematic analysis of endogenous RG selection for halophiles responding to salt stress. This work provides a valuable theory and an approach reference of internal control identification for ddPCR-based stress response models.


Assuntos
Algoritmos , Estresse Salino , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino/genética , Padrões de Referência , Perfilação da Expressão Gênica
6.
Entropy (Basel) ; 24(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36141089

RESUMO

The development of Internet technology has provided great convenience for data transmission and sharing, but it also brings serious security problems that are related to data protection. As is detailed in this paper, an enhanced steganography network was designed to protect secret image data that contains private or confidential information; this network consists of a concealing network and a revealing network in order to achieve image embedding and recovery separately. To reduce the system's computation complexity, we constructed the network's framework using a down-up structure in order to compress the intermediate feature maps. In order to mitigate the input's information loss caused by a sequence of convolution blocks, the long skip concatenation method was designed to pass the raw information to the top layer, thus synthesizing high-quality hidden images with fine texture details. In addition, we propose a novel strategy called non-activated feature fusion (NAFF), which is designed to provide stronger supervision for synthetizing higher-quality hidden images and recovered images. In order to further boost the hidden image's visual quality and enhance its imperceptibility, an attention mechanism-based enhanced module was designed to reconstruct and enhance the salient target, thus covering up and obscuring the embedded secret content. Furthermore, a hybrid loss function that is composed of pixel domain loss and structure domain loss was designed to boost the hidden image's structural quality and visual security. Our experimental results demonstrate that, due to the elaborate design of the network structure and loss function, our proposed method achieves high levels of imperceptibility and security.

7.
J Steroid Biochem Mol Biol ; 221: 106115, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460848

RESUMO

The follicular fluid of mammals has a high abundance of bile acids and these have proven to be closely related to the follicular atresia. However, the origin and content of bile acids in follicular fluid and its mechanisms on follicular atresia remain largely unknown. In this work, we analyzed the origin of bile acids in buffalo follicles by using cell biology studies, and quantified the subspecies of bile acids in follicular fluid from healthy follicles (HF) and atretic follicles (AF) by targeted metabolomics. The function of differential bile acids on follicular granulosa cells was also studied. The results showed that the bile acids transporters were abundantly expressed in ovarian tissues, but the rate-limiting enzymes were not, which was consistent with the inability of cultured follicular cells to convert cholesterol into bile acids. Targeted metabolomics analysis revealed thirteen differential subspecies of bile acids between HF and AF. The free bile acids were significant down-regulated and their conjugated forms were significantly up-regulated in AF as compared to HF. Finally, cell biological validation found a specific differentially conjugated bile acid, glycodeoxycholic acid (GDCA), which could promote follicular granulosa cell apoptosis and reduce steroid hormone secretion. In summary, our studies suggest that bile acids in buffalo follicles are transported from the blood rather than being synthesized within the follicles. The conjugated bile acids such as GDCA, accumulate in buffalo follicles, and may accelerate atresia by promoting apoptosis of granulosa cells and inhibiting steroid hormone production. These results will provide new clues for studying the physiological role and mechanism of bile acids involved in buffalo follicular atresia.


Assuntos
Búfalos , Atresia Folicular , Animais , Apoptose/fisiologia , Ácidos e Sais Biliares , Estradiol/análise , Feminino , Ácido Glicodesoxicólico , Células da Granulosa , Metabolômica , Esteroides
8.
Reprod Domest Anim ; 57(2): 185-195, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741362

RESUMO

Glycolysis in follicular granulosa cells (GCs) is the primary source of energy metabolism substrate of oocytes and is closely related to follicular development in mammals. Many physiological functions of GCs are regulated by follicle-stimulating hormone (FSH). In contrast, whether FSH regulates the glycolysis of GCs and its mechanism remains unclear. This study explored the correlation between FSH concentration and glycolysis level of GCs from different diameters of water buffalo follicles, and further explored the mechanism of FSH regulation in glycolysis in vitro cultured GCs. Results showed the variation trend of lactic acid concentration in follicular fluid and the expression level of glycolysis-related genes in GCs were consistent with the variation trend of FSH concentration in follicular fluid from follicles with different diameters. When GCs were treated with FSH in vitro, the expression level of glycolysis-related genes, lactate production and glucose uptake increased correspondingly (p < .05). Furthermore, we found that expression trend of AMPK/Sirtuin1 (SIRT1) pathway-related genes in GCs was consistent with the expression trend of glycolysis-related genes and was positively correlated with FSH concentrations in vivo or cultured in vitro. Activation of SIRT1 increased the expression level of glycolytic key proteins and lactic acid production in GCs, while inhibition of SIRT1 showed the opposite effect. In general, glycolysis in water buffalo GCs in vivo or cultured in vitro was positively correlated with FSH concentration. AMPK/SIRT1 pathway plays an important role in the regulation of FSH on glycolysis in GCs. Our findings will enrich the understanding of FSH regulating the development of water buffalo follicles.


Assuntos
Búfalos , Hormônio Foliculoestimulante , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Búfalos/metabolismo , Células Cultivadas , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Glicólise , Células da Granulosa/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
Front Vet Sci ; 8: 680182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336976

RESUMO

Granulosa cells (GCs) are the main supporting cells in follicles and play an important role in the regulation of oocyte maturation and follicular atresia. Accumulating evidence indicates that non-coding RNAs participate in regulation of the physiological function of GCs. However, whole-transcriptome analysis for GCs of buffalo has yet to be reported. In this study, healthy follicles (HFs) and atretic follicles (AFs) were defined according to the apoptosis rate of GCs and the hormone level in follicular fluid. GCs were collected from HFs and AFs (n = 15, 5 < n < 8 mm) for whole-transcriptome analysis using second-generation high-throughput sequencing. A total of 1,861 and 1,075 mRNAs, 159 and 24 miRNAs, and 123 and 100 lncRNAs, were upregulated and downregulated between HFs and AFs, respectively. Enrichment of functions and signaling pathways of these differentially expressed (DE) genes showed that most of DEmRNAs and targets of DEmiRNAs were annotated to the categories of ECM-receptor interaction and focal adhesion, as well as PI3K-AKT, mTOR, TGF-beta, Rap1, and estrogen signaling pathways. The competing endogenous RNA (CeRNA) network was also constructed based on the ceRNA theory which further revealed regulatory roles of these DERNAs in GCs of buffalo follicles. Finally, we validated that lnc4040 regulated the expression of Hif1a as miR-709 sponge in a ceRNA mechanism, suggesting their critical functions in GCs of buffalo follicles. These results show that lncRNAs are dynamically expressed in GCs of HFs and AFs, and interacting with target genes in a ceRNA manner, suggesting their critical functions in buffalo follicular development and atresia.

10.
J Steroid Biochem Mol Biol ; 212: 105944, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144152

RESUMO

Follicular atresia is a complex physiological process, which results in the waste of follicles and oocytes from the ovary. Elucidating the physiological mechanism of follicular atresia will hopefully reverse the fate of follicles, thereby improve the reproductive efficiency of female animals. However, there are still many gaps to be filled during the follicular atresia process. In this study, we first comprehensively summarized and compared a variety of methods to classify Chinese buffalo follicles with different extent of atresia. Then follicular fluid and granulosa cells from the corresponding follicles with different extent of atresia were collected for non-targeted metabolomics and transcriptomics analysis, respectively. After the detection and analysis of 129 follicles, a reasonable classification standard was formed: on the basis of morphological classification, the relative concentrations of estradiol (E2) and progesterone (PROG) in the follicular fluid were determined, follicles with an estradiol-to-progesterone (E2/PROG) ratio >5 were classified as healthy follicles (HF), 1≤ E2/PROG ≤5 as early atretic follicles (EF) and E2/PROG <1 as late atretic follicles (LF). Correspondingly, follicles with granulosa cells apoptosis rate less than 15 % were divided into HF, 15%-25% were classified as EF and more than 25 % were classified as LF. The integration analysis of non-targeted metabolomics and transcriptomics highlights the following three aspects: (1) Atresia seriously damaged the lipid metabolism homeostasis of follicle, in which PPARγ play important roles. (2) Energy metabolism and nucleotide metabolism of atretic follicles were inhibited. (3) Bilirubin is involved in follicular atresia, and it may be the main force to prevent lipid peroxidation in follicular cells. In summary, results of this study provide new understanding of the molecular mechanisms of Chinese buffalo follicular atresia.


Assuntos
Búfalos/genética , Búfalos/metabolismo , Atresia Folicular/genética , Atresia Folicular/metabolismo , Animais , Apoptose , Metabolismo dos Carboidratos , Feminino , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Metaboloma , Metabolômica , Nucleotídeos/metabolismo , Folículo Ovariano/metabolismo , Transcriptoma
11.
Cell Reprogram ; 22(1): 22-29, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32011919

RESUMO

In this study, Squalene epoxidase (SQLE) overexpression vector was transfected into bovine skeletal muscle-derived mesenchymal stem/stromal cells (MSCs) to study the molecular mechanism of SQLE regulating meat quality through myogenesis. We initially profiled the expression of SQLE in cattle embryos and adults, in the muscle tissue of four different cattle varieties, and in 11 different tissues/organs of Guangxi cattle variety. Subsequently, we isolated and cultured bovine skeletal muscle-derived MSCs and detected the expression of SQLE during cell proliferation and differentiation. Then, we constructed a bovine SQLE overexpression vector and transfected it into bovine skeletal muscle-derived MSCs by liposome transfection. Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU), flow cytometry, immunofluorescence, and quantitative polymerase chain reaction assays were used to characterize cell proliferation and differentiation in detail. The results showed that the relative expression level of bovine SQLE gene in brain tissue was the highest, and in adult muscle tissue was significantly higher than that in embryonic stage. Especially, the expression of SQLE was significantly upregulated in cell differentiation stage. Furthermore, the proliferation, cell cycle, apoptosis, and myoblast differentiation assays indicated that SQLE significantly promoted the differentiation and apoptosis of bovine skeletal muscle-derived MSCs, but inhibited their proliferation. In conclusion, our study reveals the role of SQLE in myoblast differentiation. These results will provide new clues for the regulation network of bovine muscle development.


Assuntos
Células-Tronco Mesenquimais/citologia , Desenvolvimento Muscular , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Animais , Apoptose , Bovinos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células HEK293 , Humanos , Músculo Esquelético/citologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA