RESUMO
BACKGROUND: Chronic heat stress (CHS) is a detrimental environmental stressor with a negative impact on the meat quality of broilers. However, the underlying mechanisms are not fully understood. This study investigates the effects of CHS on long non-coding RNA (lncRNA) expression and muscle injury in broilers, with a focus on its implications for meat quality. RESULTS: The results showed that CHS diminished breast muscle yield, elevated abdominal fat deposition, induced cellular apoptosis (P < 0.05), and caused myofibrosis. Transcriptomic analysis revealed 151 differentially expressed (DE) lncRNAs when comparing the normal control (NC) and HS groups, 214 DE lncRNAs when comparing the HS and PF groups, and 79 DE lncRNAs when comparing the NC and pair-fed (PF) groups. After eliminating the confounding effect of feed intake, 68 lncRNAs were identified, primarily associated with cellular growth and death, signal transduction, and metabolic regulation. Notably, the apoptosis-related pathway P53, lysosomes, and the fibrosis-related gene TGF-ß2 were significantly upregulated by lncRNAs. CONCLUSIONS: These findings indicate that chronic heat stress induces cellular apoptosis and muscle injury through lncRNA, leading to connective tissue accumulation, which likely contributes to reduced breast muscle yield and meat quality in broilers.
RESUMO
Although it is an effective treatment for acute myeloid leukemia (AML), chemotherapy leads to myelosuppression and poor hematopoietic reconstruction. Hematopoiesis is regulated by bone marrow (BM) endothelial cells (ECs), and BM ECs are dysfunctional in acute leukemia patients with poor hematopoietic reconstitution after allogenic hematopoietic stem cell transplantation. Thus, it is crucial to explore the underlying mechanism of EC impairment and establish strategies for targeted therapy. TGF-ß signaling was found to be upregulated in ECs from AML patients in complete remission (CR ECs) and led to CR EC damage. Administration of a TGF-ß inhibitor rescued the dysfunction of ECs caused by TGF-ß1 expression in vitro, especially their hematopoiesis-supporting ability. Moreover, inhibition of TGF-ß expression repaired the BM EC damage triggered by chemotherapy in both AML patients in vitro and in an AML-CR murine model, and restored normal hematopoiesis without promoting AML progression. Mechanistically, our data reveal alterations in the transcriptomic pattern of damaged BM ECs, accompanied by the overexpression of downstream molecules TGF-ßR1, pSmad2/3, and functional genes related to adhesion, angiogenesis suppression and pro-apoptosis. Collectively, our findings reveal for the first time that the activation of TGF-ß signaling leads to BM EC dysfunction and poor hematopoietic reconstitution. Targeting TGF-ß represents a potential therapeutic strategy to promote multilineage hematopoiesis, thereby benefiting more cancer patients who suffer from myelosuppression after chemotherapy.
RESUMO
This experiment aimed to reveal the dynamic changes of protein post-translational lactylation modifications and their correlations with the glycolytic process in broiler breast muscle within 48 h of postmortem acidification. The experiment involved 12 male AA broilers, 42 days old, with similar body weights (2.8 ± 0.05 kg). The breast fillets (Pectoralis major) were collected after slaughter, and samples were taken at various time points: 0, 15 min, 30 min, 45 min, 60 min, 2 h, 4 h, 6 h, 8 h, 12 h, 18 h, 24 h, 36 h, and 48 h postmortem. The results showed that the rate of glycogen decline in the muscle was highest at 45 min postmortem, and glycogen levels tended to stabilize at 8 h postmortem. The lactate content in the breast reached its highest level at 4 h postmortem and began to decrease, stabilizing at 24 h postmortem. Additionally, the glycolytic potential increased gradually in the first 4 h postmortem, decreased rapidly from 4 to 8 h. Similarly, lactylation modification levels were highest at 8 h postmortem, but stabilized at 12 h postmortem. During this process, the protein expression of the enzymatic lactylation modifier p300 showed no significant difference, while the content of the nonenzymatic lactylation substrate lactoylglutathione significantly decreased at 8 h and 24 h postmortem. Correlation analysis found that lactylation levels were negatively correlated with glycogen content, glucose content, glycolytic potential, and pH value, while positively correlated with lactate content. Besides, there was a positive correlation between lactylation levels and the protein expression of hexokinase, phosphoglycerate kinase 2, phosphoglucomutase 1, and triosephosphate isomerase. Additionally, lactylation levels were positively correlated with the activities of lactate dehydrogenase and phosphofructokinase. In summary, our experiment elucidated the dynamic changes in the entire glycolytic pathway in broiler pectoral muscle during acidification. During this process, lactylation modifications may participate in the glycolysis process by regulating the protein expression and activity of glycolytic enzymes.
RESUMO
Heat stress (HS) largely impairs the quality of broiler breast meat through protein oxidative modification. This study aimed to investigate the carbonylation pattern of Ca2+ channels and apoptotic proteins in the breast muscle of heat-stressed broilers. A total of 144 twenty-eight-day-old male Arbor Acres broilers were randomly divided into three treatment groups. The normal control (NC) group was kept at 22°C and provided with unlimited feed. The HS group was exposed to 32°C and provided with unlimited feed. The pair-fed (PF) group was kept at 22°C and given an amount of feed equivalent to that consumed by the HS group on the previous day. Results showed that broilers under HS conditions had a higher respiratory rate than those in NC and PF groups (P < 0.05). HS disrupted the morphology and structure of breast muscle fibers by decreasing the average diameters and average density of myofibers compared to the NC group (P < 0.05). HS increased the mean fluorescence intensity of the positive carbonyl signal in breast muscle compared with the NC group (P < 0.05). Besides, the pectoral Ca2+ concentration in the sarcoplasmic reticulum, cytoplasm, and mitochondria was elevated by HS when compared with the NC group (P < 0.05). In comparison to the NC and PF groups, HS increased the apoptosis rate and caspase-3 activity in the breast muscle (P < 0.05). Furthermore, HS elevated the relative protein expressions of plasma membrane Ca2+-ATPase, Na+/Ca2+ exchanger 1, and sarco/endoplasmic reticulum calcium transport ATPase 1 compared to the NC group (P < 0.05). Higher relative protein expression of µ-calpain and lower relative protein expression of cytosolic cytochrome complex were found in the HS group than the NC group (P < 0.05). HS decreased the carbonylation levels of transient receptor potential canonical 1 and inositol 1,4,5-trisphosphate receptor compared to the NC group (P < 0.05). Additionally, the carbonylation levels of cleaved caspase-3 and precursor caspase-9 were increased and decreased, respectively, by HS treatment compared to the NC group (P < 0.05). In conclusion, HS damages the myofiber based on Ca2+ dyshomeostasis and apoptosis, which are potentially associated with protein carbonylation. These results shed new light on the possible mechanism behind the development of poor meat quality in broilers due to HS.
RESUMO
Plant essential oils are unstable due to high volatility and easy oxidation, while microencapsulation provides a potentially effective strategy for increasing the stability of natural essential oils and preserving their function. This study examined the effects of feeding coated oregano essential oil and cinnamaldehyde (COEC) compounds on growth, immune organ development, intestinal morphology, mucosal immune function, and the cecal microbiota populations of broilers. Three hundred one-day-old male Arbor Acres broiler chicks were organized into five groups: (1) negative control fed basal diet alone (NC), (2) positive control receiving basal diet plus 50 mg/kg of chlortetracycline (CTC), (3) basal diet plus 150 mg/kg COEC (COEC150), (4) plus 300 mg/kg COEC (COEC300), and (5) plus 450 mg/kg COEC (COEC450). The supplement trial was continued for 42 days. The results showed that CTC, COEC300 and COEC450 treatments decreased the feed conversion ratio of broilers both in the starter and whole experiment phases, increased the height of jejunal villi at 21 d and the number of goblet cells and IgA-producing cells at 21 or 42 d compared with NC group (P < 0.05). Members of the COEC300 treatment group had a higher thymus weight index and jejunum length index than birds of NC or CTC groups at 21 d (P < 0.05). CTC and all COEC treatments decreased malondialdehyde content in jejunal mucosa at 42 d (P < 0.05). The population of Escherichia coli in the cecal digesta at 21 d was lower in the CTC, COEC300 and COEC450 treatment groups compared with the NC group (P < 0.05). In contrast to the CTC group, COEC supplementation dose-dependently accelerated body weight gain, improved jejunal morphology, decreased malondialdehyde content in jejunal mucosa, increased numbers of jejunal goblet cells and IgA-producing cells, and decreased the Escherichia coli population in cecal digesta at 21 or 42 d (P < 0.05). Thus, we concluded that feeding broiler chickens with 300 or 450 mg/kg in antibiotic-free diets can improve growth performance, enhance immune responses and inhibit the proliferation of cecal pathogenic bacteria.
RESUMO
Large yellow croaker (Larimichthys crocea) is susceptible to oxidative denaturation during storage. This work is to investigate the quality alterations by analyzing its physicochemical changes and proteomics throughout preservation under refrigeration, frozen, and slurry ice (SI) conditions. Results revealed that the freshness of large yellow croaker, as evaluated by indicators such as total volatile basic nitrogen, total viable count, and thiobarbituric acid reactive substances, was well maintained while stored in the SI group. Meanwhile, the water distribution in the muscle tissue of group SI exhibited slower fluctuations, thereby preserving the integrity of fish muscle cells. Based on label-free proteomic analysis, a considerable downregulation was observed in the mitogen-activated protein kinase (MAPK) signaling pathway, indicating that SI decelerated this metabolic pathway and effectively delayed the deterioration of muscle. Therefore, the application of SI provides potential for maintaining the quality stability of large yellow croaker.
RESUMO
This study aims to develop an experimental model of high lactate levels in broilers to mimic the condition of birds under stress or diseases and evaluate its consequent effects on meat quality. The injection sites and dosage effects were compared separately in 2 experiments. Experiment 1 includes 3 injection sites: intraperitoneal injection, intramuscular injection, and subcutaneous injection. Experiment 2 was a dosage experiment based on the results of Experiment 1: sodium lactate intraperitoneal injection group with 1.5, 3, 6 mM concentration. The results showed that injecting sodium lactate intraperitoneally, intramuscularly, or subcutaneously all significantly decreased body weight and breast muscle weight while elevating lactic acid levels in both the blood and breast muscle of broilers. Moreover, all 3 injection methods caused a significant reduction in pH24h and an increase in the shear force value of breast muscle. In addition, dose-response experiments of intraperitoneal injection showed that a concentration of 3 mM and 6 mM were significantly decreased body weight and breast muscle weight in broiler chickens, accompanied by a notable increase in breast muscle lactate content. Compared to the control group, intraperitoneal injections of 1.5 mM, 3 mM, and 6 mM sodium lactate treatments significantly reduced the yellowness values of the breast muscle. As the dose of sodium lactate increased, the shear force value of the breast meat exhibited linear and quadratic increments, while the drip loss decreased linearly. Intraperitoneal injection of 3 mM sodium lactate also significantly reduced the pH24h of broiler breast muscle. In addition, an increased dose of lactate injections up-regulated the glycolytic pathway responsible for endogenous lactate production in the breast muscle by upregulating the expression of phosphofructokinase, pyruvate kinase and lactate dehydrogenase A. In conclusion, intraperitoneal injection of sodium lactate at 3 mM directly increased breast muscle lactate levels, providing a valuable method for establishing a high-level lactate model in poultry.
Assuntos
Galinhas , Relação Dose-Resposta a Droga , Ácido Láctico , Carne , Músculos Peitorais , Lactato de Sódio , Animais , Galinhas/fisiologia , Carne/análise , Lactato de Sódio/administração & dosagem , Lactato de Sódio/farmacologia , Ácido Láctico/análise , Músculos Peitorais/efeitos dos fármacos , Injeções Intramusculares/veterinária , Injeções Intraperitoneais/veterinária , Injeções Subcutâneas/veterinária , Masculino , Distribuição AleatóriaRESUMO
BACKGROUND: Chinese giant salamander protein hydrolysates (CGSPH) are beneficial to human health as a result of their high content of amino acids and peptides. However, the formation of bitter peptides in protein hydrolysates (PHs) would hinder their application in food industry. The ultrasound assisted wet-heating Maillard reaction (MR) is an effective way to improve the flavor of PHs. Thus, the effect of ultrasonic assisted wet-heating MR on the structure and flavor of CGSPH was investigated in the present study. RESULTS: The results indicated that the ultrasound assisted wet-heating MR products (MRPs) exhibited a higher degree of graft and more significant changes in the secondary and tertiary structures of CGSPH compared to traditional wet-heating MRPs. Moreover, ultrasound assisted wet-heating MR could significantly increase the content of small molecule peptides and reduce the content of free amino acids of CGSPH, which resulted in more significant changes in flavor characteristics. The changed in flavor properties after MR (especially ultrasound assisted wet-heating MRPs) were mainly manifested by a significant reduction in bitterness, as well as a significant increase in the content of aromatic aldehyde ester compounds such as furan-2-carbaldehyde, butanal, benzaldehyde, furfural, etc. CONCLUSIONS: Ultrasound assisted wet-heating MR between CGSPH and xylose could be a promising way to improve the sensory characteristics of CGSPH. © 2024 Society of Chemical Industry.
RESUMO
Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Although extensive research on WB has been conducted using transcriptomics, effectively screening and analyzing key target information remains a challenge. In this present study, 5 transcriptomic datasets obtained from the National Center for Biotechnology Information (NCBI) were used. A meta-analysis was conducted to identify meta-differentially expressed genes (meta-DEGs) involved in the response of broilers to WB myopathy. These meta-DEGs were further analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA), supplemented by protein-protein interaction (PPI) network construction to pinpoint hub genes. These analyses help to reveal key genes, pathways, and biological processes associated with WB myopathy. The results showed that 645 up-regulated and 99 down-regulated significant meta-DEGs (|log2FC| ≥0.6, P-Meta < 0.05, and present in at least 4 datasets) were identified. GO analysis showed that multiple fibrosis-related pathways/biological processes, such as cell adhesion, connective tissue development, and collagen-rich extracellular matrix, as well as calcium ion binding were significantly upregulated. PPI analysis identified TGFB3, COL1A1, COL1A2, and COL3A1 as central hub genes involved in the fibrotic processes. KEGG analysis revealed significant upregulation of apoptosis and lysosomal pathways, with an enrichment of Ca2+-related signals and lysosomal cathepsins within the apoptosis pathway. Additionally, GSEA indicated a suppression of the tricarboxylic acid (TCA) cycle and the mitochondrial electron transport chain (ETC) in WB myopathy, with PPI analysis also identifying specific hub genes associated with these pathways. In conclusion, our comprehensive analysis of meta-DEGs elucidated key biological processes and pathways implicated in WB myopathy, including fibrosis, apoptosis, altered calcium signaling, and metabolic disruption. The identification of specific hub genes offers avenues for further investigation into the pathogenesis of this condition, potentially guiding targeted therapeutic strategies.
Assuntos
Galinhas , Doenças Musculares , Doenças das Aves Domésticas , Transcriptoma , Animais , Galinhas/genética , Perfilação da Expressão Gênica/veterinária , Doenças Musculares/veterinária , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Mapas de Interação de ProteínasRESUMO
BACKGROUND: Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major (PM) muscle. However, the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated. This study aimed to investigate the potential role of hypoxia-mediated programmed cell death (PCD) in the formation of WB myopathy. RESULTS: Histological examination and biochemical analysis were performed on the PM muscle of the control (CON) and WB groups. A significantly increased thickness of the breast muscle in the top, middle, and bottom portions (P<0.01) was found along with pathological structure damage of myofibers in the WB group. The number of capillaries per fiber in PM muscle, and the levels of pO2 and sO2 in the blood, were significantly decreased (P < 0.01), while the levels of pCO2 and TCO2 in the blood were significantly increased (P < 0.05), suggesting hypoxic conditions in the PM muscle of the WB group. We further evaluated the PCD-related pathways including autophagy, apoptosis, and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB. The ratio of LC3 II to LC3 I, and the autophagy-related factors HIF-1α, BNIP3, Beclin1, AMPKα, and ULK1 at the mRNA and protein levels, were all significantly upregulated (P < 0.05), showing that autophagy occurred in the PM muscle of the WB group. The apoptotic index, as well as the expressions of Bax, Cytc, caspase 9, and caspase 3, were significantly increased (P < 0.05), whereas Bcl-2 was significantly decreased (P < 0.05) in the WB-affected PM muscle, indicating the occurrence of apoptosis mediated by the mitochondrial pathway. Additionally, the expressions of necroptosis-related factors RIP1, RIP3, and MLKL, as well as NF-κB and the pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, were all significantly enhanced (P < 0.05) in the WB-affected PM muscle. CONCLUSIONS: The WB myopathy reduces blood supply and induces hypoxia in the PM muscle, which is closely related to the occurrence of PCD including apoptosis, autophagy, and necroptosis within myofibers, and finally leads to abnormal muscle damage and the development of WB in broilers.
RESUMO
Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.
Assuntos
Células Progenitoras Endoteliais , Hematopoese , PPAR delta , Espécies Reativas de Oxigênio , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , NADPH Oxidases/metabolismo , PPAR delta/metabolismo , PPAR delta/genética , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismoRESUMO
The clinical implications of CSF-ctDNA positivity in newly diagnosed diffuse large B cell lymphoma (ND-DLBCL) remains largely unexplored. One hundred ND-DLBCL patients were consecutively enrolled as training cohort and another 26 ND-DLBCL patients were prospectively enrolled in validation cohort. CSF-ctDNA positivity (CSF(+)) was identified in 25 patients (25.0%) in the training cohort and 7 patients (26.9%) in the validation cohort, extremely higher than CNS involvement rate detected by conventional methods. Patients with mutations of CARD11, JAK2, ID3, and PLCG2 were more predominant with CSF(+) while FAT4 mutations were negatively correlated with CSF(+). The downregulation of PI3K-AKT signaling, focal adhesion, actin cytoskeleton, and tight junction pathways were enriched in CSF(+) ND-DLBCL. Furthermore, pretreatment CSF(+) was significantly associated with poor outcomes. Three risk factors, including high CSF protein level, high plasma ctDNA burden, and involvement of high-risk sites were used to predict the risk of CSF(+) in ND-DLBCL. The sensitivity and specificity of pretreatment CSF-ctDNA to predict CNS relapse were 100% and 77.3%. Taken together, we firstly present the prevalence and the genomic and transcriptomic landscape for CSF-ctDNA(+) DLBCL and highlight the importance of CSF-ctDNA as a noninvasive biomarker in detecting and monitoring of CSF infiltration and predicting CNS relapse in DLBCL.
Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Linfoma Difuso de Grandes Células B , Mutação , Humanos , Linfoma Difuso de Grandes Células B/líquido cefalorraquidiano , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/líquido cefalorraquidiano , Biomarcadores Tumorais/genética , Idoso , Adulto , DNA Tumoral Circulante/líquido cefalorraquidiano , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Prognóstico , Idoso de 80 Anos ou mais , Adulto Jovem , Estudos ProspectivosRESUMO
Trans-cinnamaldehyde (TC), a typical plant-derived compound, has been widely used in the control of foodborne pathogen contamination. Nevertheless, the risk associated with the occurrence of viable but nonculturable (VBNC) bacteria induced by TC remains unclear. The results of this study showed that Salmonella Enteritidis (S. Enteritidis) entered the VBNC state after being induced by TC at a minimum inhibitory concentration of 312.5 µg/mL and survived for at least 22 days under TC treatment. Enhanced resistance was found against heat treatment (75°C, 30 s), antibiotics (i.e., ampicillin, ceftriaxone sodium, chloramphenicol), and hydrogen peroxide (3%) in VBNC S. Enteritidis. A synergistic effect against VBNC S. Enteritidis occurred when TC was combined with acid treatment, including lactic acid and acetic acid (pH = 3.5). VBNC and resuscitated S. Enteritidis by sodium pyruvate treatment (100 mM) were found to retain the infectious ability to Caco-2 cells. Relative expression levels of the stress-related genes relA, spoT, ppx, lon, katG, sodA, dnaK, and grpE were upregulated in VBNC S. Enteritidis. Accumulation of reactive oxygen species (ROS) and protein aggregates was observed in VBNC cells. Besides, the resuscitation of VBNC cells was accompanied with clearance of ROS and protein aggregates. In summary, this study presents a comprehensive characterization of stress tolerance and resuscitation of VBNC S. Enteritidis induced by cinnamaldehyde, and the results provide useful information for the development of effective control strategy against VBNC pathogenic bacteria in food production.
Assuntos
Acroleína , Antibacterianos , Testes de Sensibilidade Microbiana , Salmonella enteritidis , Acroleína/análogos & derivados , Acroleína/farmacologia , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/crescimento & desenvolvimento , Humanos , Células CACO-2 , Antibacterianos/farmacologia , Peróxido de Hidrogênio/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Microbiologia de Alimentos , Temperatura Alta , Ácido Acético/farmacologia , Ácido Láctico/farmacologiaRESUMO
The fatigue behavior of a high-strength bearing steel tempered under three different temperatures was investigated with ultrasonic frequency and conventional frequency loading. Three kinds of specimens with various yield strengths exhibited obvious higher fatigue strengths under ultrasonic frequency loading. Then, a 2D crystal plasticity finite element method was adopted to simulate the local stress distribution under different applied loads and loading frequencies. Simulations showed that the maximum residual local stress was much smaller under ultrasonic frequency loading in contrast to that under conventional frequency at the same applied load. It was also revealed that the maximum local stress increases with the applied load under both loading frequencies. The accumulated plastic strain was adopted as a fatigue indicator parameter to characterize the frequency effect, which was several orders smaller than that obtained under conventional loading frequencies when the applied load was fixed. The increment of accumulated plastic strain and the load stress amplitude exhibited a linear relationship in the double logarithmic coordinate system, and an improved fatigue life prediction model was established.
RESUMO
Salmonella enterica is a common foodborne pathogen that poses significant safety risks across the world. And benzalkonium bromide (BK) is widely used as a disinfectant to sterilize the food processing equipment. It has been reported that sub-lethal concentration of disinfectants induced not only the homologous resistance but also cross-resistances. This work analyzed the induced resistances of Salmonella Enteritidis by short-term adaptation (STA) and long-term adaptation (LTA) to BK. We have demonstrated that inefficient sterilization exposes Salmonella Enteritidis to sub-lethal concentrations of BK, and adapts bacteria to a higher minimum inhibitory concentration and minimum bactericidal concentration. In addition, STA, but not LTA, to BK induced heterogeneous resistance to sodium hypochlorite, and cross-resistance to freezing, desiccation, and heating, which may be caused by the membrane composition change of Salmonella Enteritidis. This work could be useful to the optimization of cleaning protocol.
RESUMO
OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Neoplasias Pancreáticas , Proteínas de Ligação a RNA , Via de Sinalização Wnt , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , beta Catenina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genéticaRESUMO
Mesenchymal stem cells (MSCs) are increasingly becoming a potential treatment approach for bone injuries due to the multi-lineage differentiation potential, ability to recognize damaged tissue sites and secrete bioactive factors that can enhance tissue repair. The aim of this work was to improve osteogenesis of carbon fibers reinforced polyetheretherketone (CF/PEEK) implants through bone marrow mesenchymal stem cells (BMSCs)-based therapy. Moreover, bioactive graphene oxide (GO) was introduced into CF/PEEK by grafting GO onto CF to boost the osteogenic efficiency of BMSCs. Subsequently, CF/PEEK was implanted into the symmetrical skull defect models of SD rats. Then in vivo biosafety and osteogenesis were evaluated. The results indicated that surface wettability of CF/PEEK was effectively improved by GO, which was beneficial for the adhesion of BMSCs. The pathological tissue sections stained with H&E showed no significant pathological change in the main organs including heart, liver, spleen, lung and kidney, which indicated no acute systemic toxicity. Furthermore, bone mineralization deposition rate of CF/PEEK containing GO was 2.2 times that of pure CF/PEEK. The X-ray test showed that the surface of CF/PEEK containing GO was obviously covered by more newly formed bone tissue than pure CF/PEEK after 8 weeks of implantation. This work demonstrated that GO effectively enhanced surface bioactivity of CF/PEEK and assisted BMSCs in accelerating differentiation into bone tissue, providing a feasible strategy for improving osteogenesis of PEEK and CF/PEEK.
Assuntos
Benzofenonas , Fibra de Carbono , Grafite , Cetonas , Células-Tronco Mesenquimais , Osteogênese , Polietilenoglicóis , Polímeros , Ratos Sprague-Dawley , Animais , Grafite/química , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Polietilenoglicóis/química , Polímeros/química , Fibra de Carbono/química , Cetonas/química , Cetonas/farmacologia , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Crânio/efeitos dos fármacos , Masculino , Diferenciação Celular/efeitos dos fármacos , Alicerces Teciduais/químicaRESUMO
As the backbone of the extracellular matrix (ECM) and the perineuronal nets (PNNs), hyaluronic acid (HA) provides binding sites for proteoglycans and other ECM components. Although the pivotal of HA has been recognized in Alzheimer's disease (AD), few studies have addressed the relationship between AD pathology and HA synthases (HASs). Here, HASs in different regions of AD brains were screened in transcriptomic database and validated in AßPP/PS1 mice. We found that HAS1 was distributed along the axon and nucleus. Its transcripts were reduced in AD patients and AßPP/PS1 mice. Phosphorylated tau (p-tau) mediates AßPP-induced cytosolic-nuclear translocation of HAS1, and negatively regulated the stability, monoubiquitination, and oligomerization of HAS1, thus reduced the synthesis and release of HA. Furthermore, non-ubiquitinated HAS1 mutant lost its enzyme activity, and translocated from the cytosol into the nucleus, forming nuclear speckles (NS). Unlike the splicing-related NS, less than 1 % of the non-ubiquitinated HAS1 co-localized with SRRM2, proving the regulatory role of HAS1 in gene transcription, indirectly. Thus, differentially expressed genes (DEGs) related to both non-ubiquitinated HAS1 mutant and AD were screened using transcriptomic datasets. Thirty-nine DEGs were identified, with 64.1 % (25/39) showing consistent results in both datasets. Together, we unearthed an important function of the AßPP-p-tau-HAS1 axis in microenvironment remodeling and gene transcription during AD progression, involving the ubiquitin-proteasome, lysosome, and NS systems.
Assuntos
Doença de Alzheimer , Núcleo Celular , Hialuronan Sintases , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Camundongos , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Transcrição Gênica , Fosforilação , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos Transgênicos , UbiquitinaçãoRESUMO
As cities have grown, conductor rail power supplies have been widely used in the field of urban rail transit. In order to improve the running performance of trains and reduce the occurrence of accidents, it is necessary to understand the vibration of shoegear-rail system under different initial contact forces and explore the dynamic performance of shoegear-rail system. Therefore, according to the structure of shoegear-rail system, a coupling model of shoegear-rail system is established in this paper. On the basis of the model, the numerical simulation of the shoegear-rail system under different initial contact forces is carried out, and finally the vibration data of the shoegear-rail system under different initial contact forces are obtained. The results show that with the increase of initial contact force in the range of 70-160 N, the vibration amplitude of the electric shoegear and the fluctuation amplitude of the contact force increase, but the maximum absolute shear force value of the conductor rail decreases. It indicates that the lower initial contact force, the better the performance of shoegear-rail system.