Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696217

RESUMO

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Assuntos
Nanopartículas , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Vírus da Diarreia Epidêmica Suína/imunologia , Animais , Nanopartículas/química , Suínos , Camundongos , Vacinas Virais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Camundongos Endogâmicos BALB C , Antígenos Virais/imunologia , Antígenos Virais/química , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Domínios Proteicos/imunologia , Feminino , Nanovacinas
2.
Virology ; 596: 110113, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801794

RESUMO

Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus , Nanopartículas , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Doenças dos Suínos , Vacinas Virais , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/genética , Nanopartículas/química , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Suínos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Camundongos Endogâmicos BALB C , Ferritinas/imunologia , Ferritinas/genética , Ferritinas/metabolismo , Feminino , Chlorocebus aethiops , Nanovacinas
3.
Microorganisms ; 12(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38543651

RESUMO

Coronaviruses in general are a zoonotic pathogen with significant cross-species transmission. They are widely distributed in nature and have recently become a major threat to global public health. Vaccines are the preferred strategy for the prevention of coronaviruses. However, the rapid rate of virus mutation, large number of prevalent strains, and lag in vaccine development contribute to the continuing frequent occurrence of coronavirus diseases. There is an urgent need for new antiviral strategies to address coronavirus infections effectively. Antiviral drugs are important in the prevention and control of viral diseases. Members of the genus coronavirus are highly similar in life-cycle processes such as viral invasion and replication. These, together with the high degree of similarity in the protein sequences and structures of viruses in the same genus, provide common targets for antiviral drug screening of coronaviruses and have led to important advances in recent years. In this review, we summarize the pathogenic mechanisms of coronavirus, common drugs targeting coronavirus entry into host cells, and common drug targets against coronaviruses based on biosynthesis and on viral assembly and release. We also describe the common targets of antiviral drugs against coronaviruses and the progress of antiviral drug research. Our aim is to provide a theoretical basis for the development of antiviral drugs and to accelerate the development and utilization of commonly used antiviral drugs in China.

4.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471043

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and even death in piglets, resulting in significant economic losses to the pig industry. Because of the ongoing mutation of PEDV, there might be variations between the vaccine strain and the prevailing strain, causing the vaccine to not offer full protection against different PEDV variant strains. Therefore, it is necessary to develop anti-PEDV drugs to compensate for vaccines. This study confirmed the anti-PEDV effect of licorice extract (Le) in vitro and in vivo. Le inhibited PEDV replication in a dose-dependent manner in vitro. By exploring the effect of Le on the life cycle of PEDV, we found that Le inhibited the attachment, internalization, and replication stages of the virus. In vivo, all five piglets in the PEDV-infected group died within 72 h. In comparison, the Le-treated group had a survival rate of 80 % at the same time, with significant relief of clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Our results suggested that Le can exert anti-PEDV effects in vitro and in vivo. Le is effective and inexpensive; therefore it has the potential to be developed as a new anti-PEDV drug.


Assuntos
Infecções por Coronavirus , Glycyrrhiza , Extratos Vegetais , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Diarreia
5.
Virology ; 594: 110037, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38498965

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.


Assuntos
Infecções por Coronavirus , Crataegus , Vírus da Diarreia Epidêmica Suína , Quercetina/análogos & derivados , Doenças dos Suínos , Animais , Suínos , Diarreia , Antivirais/farmacologia , Antivirais/uso terapêutico , Doenças dos Suínos/tratamento farmacológico
6.
mSystems ; 9(1): e0084223, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38108282

RESUMO

Limited information on the virome and bacterial community hampers our ability to discern systemic ecological risk factors that cause cattle diarrhea, which has become a pressing issue in the control of disease. A total of 110 viruses, 1,011 bacterial genera, and 322 complete viral genomes were identified from 70 sequencing samples mixed with 1,120 fecal samples from 58 farms in northeast China. For the diarrheic samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, and geographic distribution in relation to different disease-associated ecological factors; the abundance of identified viruses and bacteria was significantly correlated with the host factors of clinical status, cattle type, and age, and with environmental factors such as aquaculture model and geographical location (P < 0.05); a significant interaction occurred between viruses and viruses, bacteria and bacteria, as well as between bacteria and viruses (P < 0.05). The abundance of SMB53, Butyrivibrio, Facklamia, Trichococcus, and Turicibacter was significantly correlated with the health status of cattle (P < 0.05). The proportion of BRV, BCoV, BKV, BToV, BoNoV, BoNeV, BoAstV, BEV, BoPV, and BVDV in 1,120 fecal samples varied from 1.61% to 12.05%. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. A genome-based phylogenetic analysis revealed high variability of 10 bovine enteric viruses. The bovine hungarovirus was initially identified in both dairy and beef cattle in China. This study elucidates the fecal virome and bacterial community signatures of cattle affected by diarrhea, and reveals novel disease-associated ecological risk factors, including cattle type, cattle age, aquaculture model, and geographical location.IMPORTANCEThe lack of data on the virome and bacterial community restricts our capability to recognize ecological risk factors for bovine diarrhea disease, thereby hindering our overall comprehension of the disease's cause. In this study, we found that, for the diarrheal samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, configuration, and geographic distribution in relation to different disease-associated ecological factors. A series of significant correlations were observed between the prevalence of individual viruses and the disease-associated ecological factors. Our study aims to uncover novel ecological risk factors of bovine diarrheal disease by examining the pathogenic microorganism-host-environment disease ecology, thereby providing a new perspective on the control of bovine diarrheal diseases.


Assuntos
Doenças dos Bovinos , Vírus , Animais , Bovinos , Viroma , Filogenia , Vírus/genética , Bactérias/genética , Diarreia/epidemiologia , Doenças dos Bovinos/epidemiologia , Fatores de Risco
7.
Yi Chuan ; 45(5): 447-458, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194591

RESUMO

Neuregulin 4 (NRG4) is an important adipocytokine, which plays crucial roles in maintaining energy balance, regulating glucose and lipid metabolism, and preventing non-alcoholic fatty liver disease in mammals. At present, the genomic organization, transcript and protein isoforms of human NRG4 gene have been fully explored. Previous studies in our laboratory have shown that the NRG4 gene is expressed in chicken adipose tissue, but the chicken NRG4 (cNRG4) genomic structure, transcript and protein isoforms are still unknown. To this end, in this study, the genomic and transcriptional structure of the cNRG4 gene were systematically investigated using rapid amplification of cDNA ends (RACE) and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that the coding region (CDS) of the cNRG4 gene was small, but it had a very complex transcriptional structure characterized by multiple transcription start sites, alternative splicing, intron retention, cryptic exons, and alternative polyadenylation, thus leading to production of four 5?UTR isoforms (cNRG4 A, cNRG4 B, cNRG4 C, and cNRG4 D) and six 3?UTR isoforms (cNRG4 a, cNRG4 b, cNRG4 c, cNRG4 d, cNRG4 e, and cNRG4 f) of the cNRG4 gene. The cNRG4 gene spanned 21,969 bp of genomic DNA (Chr.10:3,490,314~3,512,282) and consisted of 11 exons and 10 introns. Compared with the cNRG4 gene mRNA sequence (NM_001030544.4), two novel exons and one cryptic exon of the cNRG4 gene were identified in this study. Bioinformatics analysis, RT-PCR, cloning and sequencing analysis showed that the cNRG4 gene could encode three protein isoforms (cNRG4-1, cNRG4-2 and cNRG4-3). This study lays a foundation for further research on the function and regulation of the cNRG4 gene.


Assuntos
Processamento Alternativo , Galinhas , Animais , Processamento Alternativo/genética , Sequência de Bases , Galinhas/genética , DNA Complementar/genética , Genômica , Íntrons/genética , Neurregulinas/genética , Isoformas de Proteínas/genética
8.
Vet Microbiol ; 281: 109743, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062110

RESUMO

Infection with porcine epidemic diarrhea virus (PEDV) causes severe watery diarrhea in newborn piglets, leading to substantial financial losses for the swine industry. In this study, we screened small molecule drugs targeting 3 C-like protease (3CLpro) by molecular docking, and further evaluated the antiviral activity of the screened drugs against PEDV. Results showed that octyl gallate (OG), a widely used food additive, exhibited strong binding affinity with the 3CLpro active sites of PEDV. Bio-layer interferometry and fluorescence resonance energy transfer revealed that OG directly interacts with PEDV 3CLpro (KD = 549 nM) and inhibits 3CLpro activity (IC50 = 22.15 µM). OG showed a strong inhibition of PEDV replication in vitro. Virus titers were decreased by 0.58 and 0.71 log10 TCID50/mL for the CV777 and HM2017 strains, respectively. In vivo, all piglets in the PEDV-infected group died at 48 h post-infection (hpi), while 75% of piglets in the OG treatment group showed significant relief from the clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Moreover, the western blotting results showed that OG also has strong antiviral activity against other swine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Our findings revealed that OG could be developed as a novel antiviral drug against PEDV. The OG exhibited a potential broad-spectrum antiviral drug for control of other swine enteric coronaviruses.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Peptídeo Hidrolases , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Simulação de Acoplamento Molecular , Doenças dos Suínos/tratamento farmacológico
9.
J Agric Food Chem ; 70(47): 14959-14973, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383077

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipogenesis and is expressed as two isoforms, PPARγ1 and PPARγ2. Our previous lentiviral overexpression study showed that PPARγ1 and PPARγ2 differentially regulated proliferation, differentiation, and apoptosis of the immortalized chicken preadipocyte cell line (ICP2). However, we cannot rule out the possibility that the endogenous expression of PPARγ isoforms may compromise our findings. In this study, using the dual sgRNA-directed CRISPR/Cas9 system, we generated PPARγ (PPARγ-/-) and PPARγ2-specific knockout (PPARγ2-/-) ICP2 cell lines and investigated the differences in proliferation and differentiation among PPARγ-/-, PPARγ2-/-, and wild-type ICP2 cells. EdU proliferation assay showed that both PPARγ2-specific and PPARγ knockouts significantly increased the proliferation rates. Consistently, real-time RT-PCR analysis showed that both PPARγ2-specific and PPARγ knockouts significantly upregulated the expression of proliferation marker genes PCNA and cyclinD1. FACS analysis revealed that PPARγ knockout significantly increased the number of cells accumulating in the S phase and decreased the number of cells accumulating in the G1/G0 phase. Oil Red O staining and gene expression analysis showed both PPARγ2-specific and PPARγ knockouts dramatically reduced capacity for adipogenic differentiation. To corroborate our previous findings, PPARγ1 and PPARγ2 expression were restored in PPARγ-/- cells by using the lentiviruses expressing chicken PPARγ1 (LV-PPARγ1) and PPARγ2 (LV-PPARγ2), respectively. Subsequent assays showed that restoration of expression of either PPARγ1 or PPARγ2 suppressed proliferation and stimulated differentiation of the PPARγ-/- cells. By comparison, PPARγ2 had stronger anti-proliferative and pro-adipogenic effects than PPARγ1. To understand the molecular mechanism underlying their differential effects on differentiation of the PPARγ-/- cells, we performed RNA-seq in the PPARγ-/- cells in which individual PPARγ isoform expression was restored at 72 h of differentiation. Transcriptomic analysis revealed that restoring PPARγ1 expression caused far more differentially expressed genes (DEGs) than restoring PPARγ2 expression. GO and KEGG pathway enrichment analyses indicated that PPARγ1 and PPARγ2 had distinct and overlapping functions in adipogenesis. Taken together, our results clearly indicate that PPARγ1 and PPARγ2 differentially impact chicken adipogenesis.


Assuntos
Adipogenia , PPAR gama , Animais , PPAR gama/genética , Adipogenia/genética , Fatores de Transcrição/genética , Galinhas/genética , Galinhas/metabolismo , Células Cultivadas , Isoformas de Proteínas/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-36293708

RESUMO

Urban resilience, as an important ability to deal with disasters in the process of urbanization, has been paid more and more attention as the result of the increasing risks that are caused by rapid urbanization. China is taking the county level as the basic unit to promote new-type urbanization and constructing resilient cities has become one of the development strategies. However, to achieve this strategy researchers need to analyze the interaction between county urbanization and urban resilience and its driving mechanism, which have been paid little attention. Therefore, this paper selected 167 counties in Hebei Province as the investigation subject. Based on the statistical data from 2010 to 2020, a comprehensive index system was developed to quantify the degree of coupling coordination between urbanization and urban resilience, and the spatial Durbin model was used to analyze the driving mechanism of it. The study shows that: Firstly, the urbanization level of counties rose year after year, with there being a geographical distribution that was "lower from southeast to northwest". The level of urban resilience increased year after year, showing a geographical distribution that was "higher from south to north" and a "core-edge" feature that was localized. Secondly, the coupling coordination degree increased steadily, and the overall level changed from a basic imbalance to a mild imbalance. In space, it is bounded by "Pingquan City-Pingshan County", which showed the distribution of "high in the east and low in the west, high in the center and low on the outskirts". Thirdly, the coupling coordination degree has spatial spillover effect. Government financial expenditure, innovation level, industrial upgrading level and urban shape index all influence the coupling coordination degree positively, with a successively decreasing impact, while the urban compactness has significant negative impacts. This study indicates that the regional differences exist in the coupling coordination degree, and the counties in different development stages need to adopt different strategies to promote the coordinated development of urbanized and resilient cities. Inter-regional support is also necessary in this process. Meanwhile, it is necessary for the government to govern various urban elements, especially in terms of their urban form.


Assuntos
Desastres , Urbanização , Cidades , China , Indústrias , Desenvolvimento Econômico
11.
Front Pharmacol ; 12: 728354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456739

RESUMO

Staphylococcus xylosus (S. xylosus) has become an emerging opportunistic pathogen due to its strong biofilm formation ability. Simultaneously, the biofilm of bacteria plays an important role in antibiotic resistance and chronic infection. Here, we confirmed that rutin can effectively inhibit biofilm formation in S. xylosus, of which the inhibition mechanism involves its ability to interact with imidazole glycerol phosphate dehydratase (IGPD), a key enzyme in the process of biofilm formation. We designed experiments to target IGPD and inhibited its activities against S. xylosus. Our results indicated that the activity of IGPD and the amount of histidine decreased significantly under the condition of 0.8 mg/ml rutin. Moreover, the expression of IGPD mRNA (hisB) and IGPD protein was significantly down-regulated. Meanwhile, the results from molecular dynamic simulation and Bio-layer interferometry (BLI) technique showed that rutin could bind to IGPD strongly. Additionally, in vivo studies demonstrated that rutin treatment reduced inflammation and protect mice from acute mastitis caused by S. xylosus. In summary, our findings provide new insights into the treatment of biofilm mediated persistent infections and chronic bacterial infections. It could be helpful to design next generation antibiotics to against resistant bacteria.

12.
J Virol ; 95(16): e0018721, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037422

RESUMO

Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.


Assuntos
Antivirais/farmacologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Quercetina/análogos & derivados , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Animais , Antivirais/química , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Simulação de Acoplamento Molecular , Sinais de Localização Nuclear , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Quercetina/química , Quercetina/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Transdução de Sinais , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
13.
Biomed Pharmacother ; 123: 109779, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918211

RESUMO

Staphylococcus xylosus (S. xylosus) is one of the emerging pathogens causing bovine mastitis with high rate of isolation in most of the reported clinical and field cases. To verify the role of glutamine synthetase (GS) in the pathogenesis of S. xylosus, we evaluated the virulence level of the wild-type strain and its glnA mutant strain in biofilm assays in vitro and murine infection model in vivo. From the results, it was observed that the glnA mutant strain was attenuated and could reduce tissue damage. 1-Hydroxyanthraquinone (1-HAQ) is a kind of anthraquinones, it exhibited a significant inhibitory effect on the growth of S. xylosus and biofilm formation in vitro and provided anti-inflammatory effects in vivo. In addition, the rate at which it inhibits the biofilm, inflammatory factors, and CFU of wild-type strains were significantly higher than that of the mutant strains, indicating that 1-hAQ might have pharmacological effects against S. xylosus through the regulation of GS protein. The effect of 1-hAQ on GS was further confirmed by the down-regulation of glnA expression, reduced GS activity, Gln content and the results of molecular docking. Taken together, these findings suggest that 1-hAQ facilitated a significant attenuation of S. xylosus pathogenicity by regulating the GS protein: a vital virulence factor. Therefore, it can be inferred that 1-hAQ may serve as a potential source of organic compound for the development of novel alternative drugs in mitigating the menace of bovine mastitis.


Assuntos
Antraquinonas/farmacologia , Antibacterianos/farmacologia , Glutamato-Amônia Ligase/metabolismo , Staphylococcus/enzimologia , Staphylococcus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Antraquinonas/química , Antraquinonas/uso terapêutico , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Mastite/tratamento farmacológico , Mastite/microbiologia , Mastite/patologia , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus/efeitos dos fármacos , Staphylococcus/crescimento & desenvolvimento
14.
Virulence ; 10(1): 58-67, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874073

RESUMO

Streptococcus suis is an important zoonotic pathogen. The massive use of tylosin and other antibiotics in swine production has led to the emergence of resistant phenotypes of S. suis. However, there are no adequate measures available to address the problem of bacterial resistance. This study involved the use of 1/4 MIC (0.125 µg/mL) of tylosin to investigate resistance-related proteins by S. suis ATCC 700794. Our results showed that 171 proteins were differentially expressed in S. suis tested with 1/4 MIC (0.125 µg/mL) of tylosin using iTRAQ-based quantitative proteomic methods. TCS, heat shock protein and elongation factors were differentially expressed at 1/4 MIC (0.125 µg/mL) of tylosin compared to non treated, control cells. Using quantitative RT-PCR analysis, we verified the relationship between the differentially expressed proteins in S. suis with different MIC values. The data showed that expression profile for elongation factor G (fusA), elongation factor Ts (tsf), elongation factor Tu (tuf), putative histidine kinase of the competence regulon, ComD (comD), putative competence-damage inducible protein (cinA) and protein GrpE (grpE), observed in tylosin-resistant S. suis, correlated with that of S. suis ATCC 700794 at 1/4 MIC (0.125 µg/mL). The MIC of tylosin-resistant showed high-level resistance in terramycin, chlortetracycline, ofloxacin and enrofloxacin. Our findings demonstrated the importance of elongation factors, TCS and heat shock protein during development of tylosin resistance in S. suis. Thus, our study will provide insight into new drug targets and help reduce bacterial multidrug resistance through development of corresponding inhibitors.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Tilosina/farmacologia , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Infecções Estreptocócicas/microbiologia , Estresse Fisiológico
15.
PLoS One ; 14(12): e0226260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860659

RESUMO

Staphylococcus xylosus (S. xylosus) is a type of coagulase-negative Staphylococcus, which was previously considered as non-pathogenic. However, recent studies have linked it with cases of mastitis in cows. Isoliquiritigenin (ISL) is a bioactive compound with pharmacological functions including antibacterial activity. In this study, we evaluated the effect of ISL on S. xylosus in vitro and in vivo. The MIC of ISL against S. xylosus was 80 µg/mL. It was observed that sub-MICs of ISL (1/2MIC, 1/4MIC, 1/8MIC) significantly inhibited the formation of S. xylosus biofilm in vitro. Previous studies have observed that inhibiting imidazole glycerol phosphate dehydratase (IGPD) concomitantly inhibited biofilm formation in S. xylosus. So, we designed experiments to target the formation of IGPD or inhibits its activities in S. xylosus ATCC 700404. The results indicated that the activity of IGPD and its histidine content decreased significantly under 1/2 MIC (40 µg/mL) ISL, and the expression of IGPD gene (hisB) and IGPD protein was significantly down-regulated. Furthermore, Bio-layer interferometry experiments showed that ISL directly interacted with IGPD protein (with strong affinity; KD = 234 µM). In addition, molecular docking was used to predict the binding mode of ISL and IGPD. In vivo tests revealed that, ISL significantly reduced TNF-α and IL-6 levels, mitigated the destruction of the mammary glands and reversed the production of inflammatory cells in mice. The results of the study suggest that, ISL may inhibit S. xylosus growth by acting on IGPD, which can be used as a target protein to treat infections caused by S. xylosus.


Assuntos
Chalconas/administração & dosagem , Hidroliases/antagonistas & inibidores , Mastite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus/efeitos dos fármacos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Biofilmes/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidroliases/química , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Staphylococcus/enzimologia , Staphylococcus/crescimento & desenvolvimento
16.
BMC Plant Biol ; 19(1): 487, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711412

RESUMO

BACKGROUND: Hazy weather significantly increase air pollution and affect light intensity which may also affect medicinal plants growth. Syringa oblata Lindl. (S. oblata), an effective anti-biofilm medicinal plants, is also vulnerable to changes in plant photoperiods and other abiotic stress responses. Rutin, one of the flavonoids, is the main bioactive ingredient in S. oblata that inhibits Streptococcus suis biofilm formation. Thus, the present study aims to explore the biosynthesis and molecular basis of flavonoids in S. oblata in response to different light intensity. RESULTS: In this study, it was shown that compared with natural (Z0) and 25% ~ 35% (Z2) light intensities, the rutin content of S. oblata under 50% ~ 60% (Z1) light intensity increased significantly. In addition, an integrated analysis of metabolome and transcriptome was performed using light intensity stress conditions from two kinds of light intensities which S. oblata was subjected to: Z0 and Z1. The results revealed that differential metabolites and genes were mainly related to the flavonoid biosynthetic pathway. We found out that 13 putative structural genes and a transcription factor bHLH were significantly up-regulated in Z1. Among them, integration analysis showed that 3 putative structural genes including 4CL1, CYP73A and CYP75B1 significantly up-regulated the rutin biosynthesis, suggesting that these putative genes may be involved in regulating the flavonoid biosynthetic pathway, thereby making them key target genes in the whole metabolic process. CONCLUSIONS: The present study provided helpful information to search for the novel putative genes that are potential targets for S. oblata in response to light intensity.


Assuntos
Flavonoides/biossíntese , Luz , Metaboloma/efeitos da radiação , Syringa/metabolismo , Transcriptoma/efeitos da radiação , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Syringa/genética , Syringa/efeitos da radiação
17.
Front Chem ; 7: 381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214565

RESUMO

Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in most biological growth and biofilm formation, suggesting that GS may be used as a promising target for antibacterial therapy. We asked whether a GS inhibitor could be found as an anti-infective agent of Staphylococcus xylosus (S. xylosus). Here, computational prediction followed by experimental testing was used to characterize GS. Sorafenib was finally determined through computational prediction. In vitro experiments showed that sorafenib has an inhibitory effect on the growth of S. xylosus by competitively occupying the active site of GS, and the minimum inhibitory concentration was 4 mg/L. In vivo experiments also proved that treatment with sorafenib significantly reduced the levels of TNF-α and IL-6 in breast tissue from mice mastitis, which was further confirmed by histopathology examination. These findings indicated that sorafenib could be utilized as an anti-infective agent for the treatment of infections caused by S. xylosus.

18.
RSC Adv ; 9(62): 36088-36096, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540619

RESUMO

Syringa oblata Lindl. (S. oblata) is a medicinal plant with effective broad-spectrum antibacterial activity, which can also inhibit Streptococcus suis biofilm formation. The processing of herbal medicine can purify medicinal materials, provide acceptable taste, reduce toxicity, enhance efficacy, influence performance and facilitate preparation. Thus, the aim of this study was to enhance the biofilm inhibition activity of S. oblata toward Staphylococcus xylosus (S. xylosus) using the best processing method. The content of rutin and flavonoids and the ability to inhibit the biofilm formation by S. oblata were examined using four processing methods. One of the best methods, the process of stir-frying S. oblata with vinegar, was optimized based on the best rutin content by response surface methodology. The histidine content and hisB gene expression of S. xylosus biofilm in vitro, resulting from stir-frying S. oblata with vinegar, were evaluated and were found to be significantly decreased and down-regulated, respectively. The results show that S. oblata stir-fried with vinegar can be used to effectively treat diseases resulting from S. xylosus infection. This is because it significantly inhibited S. xylosus biofilm formation by interfering with the biosynthesis of histidine; thus, its mechanism of action is decreasing histidine synthesis.

19.
Cell Reprogram ; 20(3): 205-213, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29782192

RESUMO

Epigenetic reprogramming and somatic cell nuclear transfer (SCNT) cloning efficiency were recently enhanced using histone deacetylase inhibitors (HDACis). In this study, we investigated the time effect of CI994, an HDACi, on the blastocyst formation rate, acetylation levels of H3K9 and H4K12, DNA methylation levels of anti-5-methylcytosine (5mC), and some mRNA expression of pluripotency-related genes in pig SCNT embryos. Treatment with 10 µM CI994 for 24 hours significantly improved the blastocyst formation rate of SCNT embryos in comparison with the untreated group (p < 0.05). Moreover, average fluorescence intensities of H3K9 and H4K12 in CI994-treated embryos were remarkably increased at the pseudo-pronuclear stage, but not at the blastocyst stage. The intensity of POU5F1 was higher in CI994-treated blastocysts than in control blastocysts, whereas that of 5mC did not differ between the two groups. The percentage of apoptotic cells in blastocysts was significantly higher in the untreated group than in the CI994-treated group. mRNA levels of POU5F1 and SOX2 were significantly increased in the CI994-treated group. These observations suggest that optimum exposure (10 µM for 24 hours) to CI994 after activation elevates the level of histone acetylation and subsequently improves the in vitro development of pig SCNT embryos.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Técnicas de Transferência Nuclear/veterinária , Fenilenodiaminas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzamidas , Blastocisto/fisiologia , Reprogramação Celular/efeitos dos fármacos , Clonagem de Organismos/veterinária , Metilação de DNA/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Suínos
20.
Front Microbiol ; 9: 665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675012

RESUMO

Staphylococcus xylosus (S. xylosus) is an AT-rich and coagulase-negative Staphylococcus (CNS). It is normally regarded as non-pathogenic, however, recent studies have demonstrated that it is related to human opportunistic infections and bovine mastitis. In addition, S. xylosus strains have the ability to form biofilm. Biofilms are also involved in chronic infections and antibiotic resistance, there are only a few reports about cefquinome inhibiting S. xylosus biofilm formation and the protein targets of cefquinome. In our study, we found that sub-MICs of cefquinome were sufficient to inhibit biofilm formation. To investigate the potential protein targets of cefquinome, we used iTRAQ for the analyses of cells at two different conditions: 1/2-MIC (0.125 µg/mL) cefquinome treatment and no treatment. Using iTRAQ technique and KEGG database analysis, we found that proteins differently expression in histidine metabolism pathway may play a role in the process by which 1/2-MIC (0.125 µg/mL) cefquinome inhibits S. xylosus biofilm formation. Interestingly, we found a sharply down-regulated enzyme [A0A068E9J3 imidazoleglycerol-phosphate dehydratase (IGPD)] involved in histidine metabolism pathway in cefquinome-treated cells. We demonstrated the important role of IGPD in sub-MICs cefquinome inhibiting biofilm formation of S. xylosus by gene (hisB) knockout, IGPD enzyme activity and histidine content assays. Thus, our data sheds light on important role of histidine metabolism in S. xylosus biofilm formation; especially, IGPD involved in histidine metabolism might play a crucial role in sub-MICs cefquinome inhibition of biofilm formation of S. xylosus, and we propose IGPD as an attractive protein target of cefquinome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA