Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731053

RESUMO

Background: Gastric cancer (GC) epidemiology and outcomes vary by gender. Methods: We reviewed 18,436 GC patients from 2008 to 2018 and looked for gender differences in clinical characteristics and survival. Results: The gender proportion was 71% male and 29% female. Males had a significantly (p < 0.001) higher proportion of differentiated GC (66.3%) and a lower proportion of undifferentiated GC (26.3%). Diagnosis through medical check-ups was more common in males (30.0% vs. 26.4%, p < 0.001). Clinical staging revealed 54.6% of males and 52.9% of females had localized disease without lymph node metastasis (LNM), while distant metastasis occurred in 17.4% of males and 16.9% of females (p < 0.001). Kaplan-Meier survival curves indicated females had a significantly higher overall survival (p = 0.0018). The survival advantage for females was evident in the early stages, with a significant difference in localized disease without LNM (p < 0.001) and localized disease with LNM (p = 0.0026, log-rank test) but not in the advanced stages. Multivariate Cox regression analysis showed a significantly reduced mortality risk in females (p < 0.001). Conclusions: Significant gender differences exist with regard to pathological type, presentation, clinical stage, and overall survival. These findings suggest gender-specific strategies for screening, diagnosis, and treatment.

3.
Langmuir ; 38(23): 7346-7356, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35637204

RESUMO

Efficient removal of organic dyes from contaminated water has become a great challenge and urgent work due to increasingly serious environmental problems. Here, we have for the first time prepared nanolayer-constructed TiO(OH)2 microstructures which can present negative charge by deprotonation of the hydroxyl group to efficiently and selectively remove cationic dyes from aqueous solution through electrostatic interaction and an attraction mechanism. The nanolayer-constructed TiO(OH)2 microstructures achieve a high adsorption capacity of 257 mg g-1 for methylene blue (MB). The adsorption kinetics, thermodynamics, and isotherms of MB over the TiO(OH)2 microstructures have been studied systemically. The experimental measurements and corresponding analyses demonstrate that the adsorption process of MB on TiO(OH)2 microstructures follows a kinetic model of pseudo-second-order adsorption, agrees well with the Langmuir isotherm mode, and is a spontaneous and exothermic physisorption. Fourier transform infrared (FT-IR) spectra confirm that the prepared TiO(OH)2 microstructures possess hydroxyl group which can deprotonate to present negative charge in solution. Further experimental studies evidently demonstrate that the TiO(OH)2 microstructures also can remove other cationic dyes with positive charge such as basic yellow 1, basic green 4, and crystal violet but cannot adsorb anionic dye of methyl orange (MO) with negative charge in aqueous solution. The measurements for FT-IR spectra and the adsorption of cationic and anionic dyes evidently reveal that the adsorption of cationic dyes over the TiO(OH)2 microstructures is achieved by the electrostatic interaction and attraction between TiO(OH)2 and the dye. This work opens a strategy for the design of new absorbents to efficiently remove organic dyes from aqueous solution through an electrostatic attraction-driven adsorption process.

4.
J Colloid Interface Sci ; 613: 103-116, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032771

RESUMO

The hydrothermally prepared two-dimensional copper selenide nanosheets (2D CuSe NSs) have been employed for the first time to degrade rhodamine B (RhB) in the presence of hydrogen peroxide (H2O2) under ultraviolet to near-infrared (NIR) light irradiation and dark condition. The experimental measurements demonstrate that 99.7% RhB is degraded under NIR light irradiation for 120 min. Moreover, the experimental tests clearly demonstrate that the 2D CuSe NSs display excellent ability to degrade RhB under dark condition. The different degradation mechanisms under the light irradiation and dark condition have been revealed by the experimental tests through the investigation of H2O2 role and the evaluation of hydroxyl radicals (•OH) and H2O2 concentration during the degradation reaction. Under light irradiation, the H2O2 traps the photogenerated electrons of the CuSe to generate •OH and hydroxide ion (OH-), and the holes react with OH- to produce •OH, making RhB to be degraded efficiently. Under dark conduction, the 2D CuSe NSs react with H2O2 to exhibit Fenton-like process to degrade RhB with a degradation rate of 90.0% within 120 min. This work opens a pathway for developing nanostructures with full-solar-responsive and strong near-infrared photocatalytic activity as well as Fenton-like reaction to efficiently degrade pollutants under light irradiation and dark condition.


Assuntos
Poluentes Ambientais , Peróxido de Hidrogênio , Cobre , Radical Hidroxila , Luz , Raios Ultravioleta
5.
ACS Appl Mater Interfaces ; 7(28): 15117-22, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26158908

RESUMO

The compact layer plays an important role in conducting electrons and blocking holes in perovskite solar cells (PSCs). Here, we use a two-dimensional titania nanosheet (TNS) thin film as the compact layer in CH3NH3PbI3 PSCs. TNS thin films with thicknesses ranging from 8 to 75 nm were prepared by an electrophoretic deposition method from a dilute TNS/tetrabutylammonium hydroxide solution. The TNS thin films contact the fluorine-doped tin oxide grains perfectly. Our results show that a 8-nm-thick TNS film is sufficient for acting as the compact layer. Currently, the PSC with a TNS compact layer has a high efficiency of 10.7% and relatively low hysteresis behavior.

6.
Phys Chem Chem Phys ; 16(42): 23316-9, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25259378

RESUMO

As an inorganic photoabsorber, selenium was used in a mesoscopic solar cell with a hybrid organic-inorganic structure of TiO2/Se/P3HT/PEDOT:PSS/Ag, in which the Se layer was prepared by vacuum thermal deposition and post thermal treatment. The microstructure, photoelectrical properties, as well as the rationality in structural design of the solar cell were illustrated in detail. Finally, the hybrid solar cell demonstrated a photoelectric conversion efficiency of 2.63%.

7.
Chem Commun (Camb) ; 50(39): 5020-2, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24709962

RESUMO

The ionic liquid N-butyl-N'-(4-pyridylheptyl)imidazolium bis(trifluoromethane)sulfonimide (BuPyIm-TFSI) was used as a dual-functional additive to improve the electrical properties of the hole-transporting material (HTM) for perovskite solar cells. BuPyIm-TFSI improved the conductivity of HTM and reduced the dark current of the solar cell simultaneously, thereby greatly increasing the power conversion efficiency.

8.
J Phys Chem Lett ; 5(18): 3241-6, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26276339

RESUMO

Low cost, high efficiency, and stability are straightforward research challenges in the development of organic-inorganic perovskite solar cells. Organolead halide is unstable at high temperatures or in some solvents. The direct preparation of a carbon layer on top becomes difficult. In this study, we successfully prepared full solution-processed low-cost TiO2/CH3NH3PbI3 heterojunction (HJ) solar cells based on a low-temperature carbon electrode. Power conversion efficiency of mesoporous (M-)TiO2/CH3NH3PbI3/C HJ solar cells based on a low-temperature-processed carbon electrode achieved 9%. The devices of M-TiO2/CH3NH3PbI3/C HJ solar cells without encapsulation exhibited advantageous stability (over 2000 h) in air in the dark. The ability to process low-cost carbon electrodes at low temperature on top of the CH3NH3PbI3 layer without destroying its structure reduces the cost and simplifies the fabrication process of perovskite HJ solar cells. This ability also provides higher flexibility to choose and optimize the device, as well as investigate the underlying active layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA