Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400652, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552224

RESUMO

Designing a reasonable heterojunction is an efficient path to improve the separation of photogenerated charges and enhance photocatalytic activity. In this study, Cu2-xS@NiFe-LDH hollow nanoboxes with core-shell structure are successfully prepared. The results show that Cu2-xS@NiFe-LDH with broad-spectrum response has good photothermal and photocatalytic activity, and the photocatalytic activity and stability of the catalyst are enhanced by the establishment of unique hollow structure and core-shell heterojunction structure. Transient PL spectra (TRPL) indicates that constructing Cu2-xS@NiFe-LDH heterojunction can prolong carrier lifetime obviously. Cu2-xS@NiFe-LDH shows a high photocatalytic hydrogen production efficiency (5176.93 µmol h-1 g-1), and tetracycline degradation efficiency (98.3%), and its hydrogen production rate is ≈10-12 times that of pure Cu2-xS and NiFe-LDH. In situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) provide proofs of the S-scheme electron transfer path. The S-scheme heterojunction achieves high spatial charge separation and exhibits strong photoredox ability, thus improving the photocatalytic performance.

2.
Dalton Trans ; 52(22): 7724-7730, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212176

RESUMO

Reasonable design of heterojunction photocatalysts can effectively promote charge separation, thus improving their photocatalytic performance. Herein, a Bi2Fe4O9@ZnIn2S4 S-scheme laminated heterojunction photocatalyst with 2D/2D interface interaction is prepared via a hydrothermal-annealing-hydrothermal method. The photocatalytic hydrogen production rate of Bi2Fe4O9@ZnIn2S4 is up to 3964.26 µmol h-1 g-1, which is 12.1 times higher than that of pristine ZnIn2S4. In addition, its photocatalytic tetracycline degradation efficiency (99.9%) is also optimized. The enhanced photocatalytic performance can be attributed to the formation of S-scheme laminated heterojunctions that facilitate charge separation as well as strong 2D/2D laminated interface interactions favoring charge transfer. By combining in situ irradiation X-ray photoelectron spectroscopy with other characterization methods, the photoexcited charge transfer mechanism of S-scheme heterojunctions has been proved. Photoelectric chemical tests demonstrate the effectiveness of the S-scheme laminated heterojunction in improving the charge separation. This strategy provides a novel perspective for designing other high-efficient S-scheme laminated heterojunction photocatalysts.

3.
Dalton Trans ; 51(48): 18480-18488, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421058

RESUMO

Na-doped g-C3N4/NiO 2D/2D laminated p-n heterojunction nanosheets are fabricated by facile calcination and hydrothermal methods. The average thickness of g-C3N4 nanosheets is ∼1.388 nm, and the ultrathin structure allows for a high specific surface area and enough surface active sites, increasing the surface reactivity. The flower ball like structure of NiO increases the light utilization rate. Na doping accelerates charge separation and transport by increasing the electrical conductivity. The g-C3N4 and NiO nanosheets form 2D/2D laminated structures, and the spherical structure can suppress the agglomeration of 2D nanosheets, which could realize adequate interface contact and form efficient p-n heterojunctions. The p-n heterostructure builds an internal electric field to accelerate spatial charge separation. Under visible light irradiation, the photocatalytic degradation efficiency for ciprofloxacin and the hydrogen production rate of Na-doped g-C3N4/NiO are up to 99.0%, and 2299.32 µmol h-1 g-1, respectively, which are several times higher than those of the pristine one. The fabrication strategy for 2D/2D laminated heterojunctions may provide new insights for the preparation of novel laminated photocatalysts with high performance.

4.
Nanoscale ; 14(39): 14741-14749, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36172834

RESUMO

Interface engineering is regarded as an effective strategy for charge separation. Metal-organic framework (MOF)-5/CuO@ZnIn2S4 core-shell Z-scheme tandem heterojunctions with a three-dimensional floral spherical shape are prepared by a two-step solvothermal and oxidative method. The flower spherical core-shell structure enhances multiple reflections and refractions of light and thus improves light utilization efficiently. In addition, this core-shell structure can supply sufficient active sites for photocatalytic reactions. Meanwhile, the composition of Z-scheme tandem heterojunctions and the photothermal effect contributed to the spatial charge separation and accelerated the photocatalytic process. The photocatalytic hydrogen production rate of MOF-5/CuO@ZnIn2S4 (1938.3 µmol g-1 h-1) is 18 times higher than that of pristine MOF-5, and the photocatalytic degradation efficiency of 2,4-dichlorophenol and phenol can reach up to 98.7% and 97.3%, respectively. In addition, multiple cycle experiments demonstrate high stability, which is favorable for practical applications.

5.
J Hazard Mater ; 437: 129436, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35897176

RESUMO

The fabrication of an efficient photoFenton system without the addition of H2O2 is still a challenge and is cost-effective and favorable for practical applications. In this work, a core@shell Z-scheme heterojunction nanoreactor was successfully fabricated, in which hierarchical two-dimensional (2D) ZnIn2S4 nanosheets are coated on defective iron-based metal-organic frameworks (MOFs) (NH2-MIL-88B(Fe)), realizing efficient in-situ evolution of H2O2 and constructing an optimal heterogeneous Fenton platform. The degradation rates of defective NH2-MIL-88B(Fe)@ZnIn2S4 (0.4 g L-1) for bisphenol A and ofloxacin under visible light irradiation within 180 min reached 99.4% and 98.5%, respectively, and the photocatalytic hydrogen production efficiency was approximately 502 µmol h-1 g-1. The excellent photoFenton performance was attributed to the introduction of ligand defects into the MOF, which can adjust the band structure to enhance the light absorption capacity, and the in-situ generation of H2O2 accelerating the Fe3+/Fe2+ conversion. In addition, the formation of the core@shell nanoreactor Z-scheme heterojunction structure promoted spatial charge separation. This strategy offers new ideas for constructing efficient photocatalysis and photoFenton systems.

6.
Small ; 18(31): e2202544, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691938

RESUMO

Major issues in photocatalysis include improving charge carrier separation efficiency at the interface of semiconductor photocatalysts and rationally developing efficient hierarchical heterostructures. Surface continuous growth deposition is used to make hollow Cu2-x S nanoboxes, and then simple hydrothermal reaction is used to make core-shell Cu2-x S@ZnIn2 S4 S-scheme heterojunctions. The photothermal and photocatalytic performance of Cu2-x S@ZnIn2 S4 is improved. In an experimental hydrogen production test, the Cu2-x S@ZnIn2 S4 photocatalyst produces 4653.43 µmol h-1 g-1 of hydrogen, which is 137.6 and 13.8 times higher than pure Cu2-x S and ZnIn2 S4 , respectively. Furthermore, the photocatalyst exhibits a high tetracycline degradation efficiency in the water of up to 98.8%. For photocatalytic reactions, the hollow core-shell configuration gives a large specific surface area and more reactive sites. The photocatalytic response range is broadened, infrared light absorption enhanced, the photothermal effect is outstanding, and the photocatalytic process is promoted. Meanwhile, characterizations, degradation studies, active species trapping investigations, energy band structure analysis, and theoretical calculations all reveal that the S-scheme heterojunction can efficiently increase photogenerated carrier separation. This research opens up new possibilities for future S-scheme heterojunction catalyst design and development.


Assuntos
Antibacterianos , Tetraciclina , Antibacterianos/química , Catálise , Hidrogênio , Tetraciclina/química
7.
J Colloid Interface Sci ; 607(Pt 2): 942-953, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34571315

RESUMO

A hollow core-shell potassium phosphomolybdate (KMoP)@cadmium sulfide (CdS)@bismuth sulfide (Bi2S3) Z-scheme tandem heterojunction is fabricated by a simple hydrothermal strategy and kept in a water bath to continue the reaction. At the same time, the ternary structure combined Keggin-type polyoxometalate with two photosensitive sulfide semiconductors to form a stable hollow core-shell heterojunction. KMoP@CdS@Bi2S3 with a narrow band gap of âˆ¼ 1.2 eV also has excellent photothermal performance, which may further promote photocatalytic efficiency. The hollow core-shell KMoP@CdS@Bi2S3 tandem heterojunction shows excellent H2 production performance, CrVI reduction ability and photocatalytic degradation performance of highly toxic tetracycline (TC). Under visible light irradiation, the photocatalytic H2 generation rate of the KMoP@CdS@Bi2S3 tandem heterojunction reaches 831 µmol h-1, which is 103 times higher than that of pristine KMoP. The photocatalytic reduction efficiency of CrVI and degradation efficiency of TC are as high as 95.5 and 97.51%, ∼4 times higher than that of KMoP. The boosted photocatalytic performance can be ascribed to the formation of core-shell Z-scheme tandem heterojunctions favoring spatial charge separation and the narrow band gap, which extends the photoresponse to visible light/NIR regions. When TC and CrVI exist at the same time, the reduction efficiency of CrVI can be as high as 99.64% because the intermediate of TC degradation can promote the reduction of CrVI. In addition, the photocatalytic performance of the KMoP@CdS@Bi2S3 heterojunction remains nearly constant after 4 recycles, which indicates high stability. The design strategy may provide new insights for preparing other high-performance core-shell tandem heterojunction photocatalysts for solar energy conversion.


Assuntos
Cádmio , Potássio , Bismuto , Compostos de Cádmio , Catálise , Molibdênio , Ácidos Fosfóricos , Sulfetos
8.
Environ Sci Pollut Res Int ; 29(6): 9269-9281, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34505244

RESUMO

Adding a corrosion inhibitor to the chloride deicing salt can prevent the corrosion and pollution of Cl-, which is very important. Layered double hydroxide (LDHs), calcined at high temperature is used as adsorbents to remove various anionic contaminants, and it can reduce the freezing point of solution after adsorbing anions. Therefore, this paper reports the use of calcined LDHs as corrosion inhibitors in deicing salts, which are denoted as MgAlOx or MgAlFeOx depending on the preparation element. By analyzing the removal efficiency and the freezing point of MgAlOx and MgAlFeOx to Cl-, the feasibility of the study was determined. Resulted that the removal efficiency to Cl- of MgAlFeOx at low temperature (0 ± 2 °C) and room temperature (25 ± 2 °C) was higher than that of MgAlOx, reaching 39.4% and 85.60%, respectively. And the freezing point of MgAlFeOx was lower than that of MgAlOx, the value was -12.0 °C. At the same time, we also found that CaCl2-MgAlOx and CaCl2-MgAlFeOx significantly reduced the corrosion of carbon steel and concrete compared with chloride salts, and CaCl2-MgAlFeOx had the lowest corrosion degree. Hence, MgAlFeOx was chosen as the corrosion inhibitor in chloride deicing salt. The metal molar ratio, synthesis temperature, and calcination temperature for preparation of MgAl/MgAlFe-LDHs were determined by XRD and TG-DSC analysis that were 9/2/1, 120 °C, and 500 °C, respectively. Characterization methods such as Zeta, XRD, XPS, BET, and SEM were used to study in detail the characteristic changes of MgAlFe-LDHs and MgAlFeOx after Fe3+ was added, and the mechanism of corrosion inhibitors was further determined that was achieved by adsorption and neutralization.


Assuntos
Cloretos , Aço , Adsorção , Corrosão , Halogênios
9.
J Hazard Mater ; 414: 125487, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676255

RESUMO

Plasma Cu-decorated TiO2-x/CoP particle-level hierarchical heterojunction photocatalysts with surface engineering were fabricated through solvothermal and solid phase reduction strategies. The CoP nanoparticles not only serve as a cost-effective cocatalyst but also provide abundant surface active sites, which facilitate rapid transfer of photogenerated carriers. The Ti3+ and oxygen vacancy defects extend photoresponse from UV to visible light region, and enhance the separation efficiency of photogenerated carriers efficiently. Because of surface plasma resonance (SPR) of Cu, Cu/TiO2-x/CoP with average particle size of 100-200 nm has significant photothermal effect, in which the temperature of Cu/TiO2-x/CoP is increased by 76 °C with irradiation for 30 s, ~ 8 times higher than that of the original TiO2. Cu/TiO2-x/CoP exhibits a high photocatalytic degradation rates for highly toxic 2,4-dichlorophenol (99.2%) and 2,4,6-trichlorophenol (98.5%), which higher 7.6 and 8.9 times than the initial TiO2, respectively. Thanks to the particle-level hierarchical heterojunction, the efficient surface engineering and SPR effect favoring the spatial charge separation, Cu/TiO2-x/CoP shows excellent photocatalytic-photothermal Performance. This particle-level hierarchical heterojunction architectural design provides a new insight for synthesizing particulate photocatalysts with high-efficiency.

10.
J Colloid Interface Sci ; 592: 259-270, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662830

RESUMO

A novel zinc sulfide quantum dot (ZnS QD)/zinc oxide (ZnO) nanosphere/bismuth-enriched bismuth oxyiodide (Bi4O5I2) tandem heterojunction photocatalyst is fabricated through two-step solvothermal, calcination and one-step hydrothermal strategies. The successfully constructed core-shell nanostructure can increase the interface area and the active sites of the composite photocatalysts. The formation of a Z-scheme/Type-II tandem heterojunction favors the transfer and spatial separation of charge carriers, in which Bi4O5I2 plays a bridging role to connect ZnO and ZnS. Simultaneously, the participation of Bi4O5I2 significantly shortens the band gap of the composite photocatalyst. This dual functional ZnO@Bi4O5I2/ZnS composite photocatalyst has a high photocatalytic hydrogen evolution rate of 578.4 µmol g-1h-1 and an excellent photocatalytic degradation efficiency for bisphenol A (BPA) and 2,4,5-trichlorophenol (TCP). In addition, cycling tests show that ZnO@Bi4O5I2/ZnS has a high stability, which is favorable for practical applications. This novel ZnO@Bi4O5I2/ZnS Z-scheme/Type-II tandem heterojunction photocatalyst will provide new ideas for the multichannel charge transfer of other highly efficient heterojunction photocatalysts.

11.
Chemosphere ; 271: 129500, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33429261

RESUMO

The difficult recycle, secondary pollution and insufficient sunlight utilization of powder photocatalysts are main obstacles for practical applications. Bi2S3@Ag2S heterojunction supported on surface of carbon fiber cloth (CC) are fabricated through hydrothermal in-situ growth method combined with ultrasonic loading strategy, which can be self-floated on water surface. Bi2S3@Ag2S nano-heterojunction with narrow band gap shows enhanced full spectrum absorption, which is in favor of improving the photocatalytic-photothermal performance. Self-floating CC as a substrate not only absorbs solar light converting to thermal energy, but also favors the recycle of catalysts. The resultant Bi2S3@Ag2S/CC composite films exhibit excellent photothermal conversion performance and photocatalytic degradation activity for tetracycline hydrochloride in low temperature wastewater under simulated sunlight. Experimental results confirm that the superoxide group (·O2-) is the main factor for the robust catalytic performance. The good photothermal-photocatalytic performance can be ascribed to the efficient absorption of sunlight for self-floating characteristics and high charge carriers separation efficiency of Bi2S3@Ag2S nano-heterojunction. This novel self-floating photothermal-photocatalytic film will have potential applications in fields of environment.


Assuntos
Prata , Luz Solar , Fibra de Carbono , Catálise , Luz
12.
J Colloid Interface Sci ; 582(Pt B): 752-763, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911419

RESUMO

It is known that fabrication of tandem heterojunctions between different types of heterojunctions can promote the charge separation. Herein, novel cadmium sulfide quantum dots (CdS QDs)/dodecahedral phosphotungstic acid potassium K3PW12O40 (KPW)/oxygen-doped mesoporous graphite carbon nitride (meso-g-C3N4) nanosheets tandem heterojunctions are prepared by the hydrothermal method combined with direct template calcination and in-situ chemical sedimentation strategy. The results show that tandem heterojunctions formed by the Z-Scheme heterojunction between CdS QDs and KPW and the type-II heterojunction between CdS QDs and meso-g-C3N4 can extend the optical response into visible light region. Importantly, under visible light irradiation, photocatalytic hydrogen production rate and photocatalytic Cr6+ removal rate over CdS/KPW/meso-g-C3N4 is higher than that of KPW and CdS/KPW. This remarkable photocatalytic performance is due to the effective charge separation and transfer of the special tandem heterojunction structure. This novel tandem heterojunction will offer new insights for fabricating other high-performance photocatalytic systems.

13.
J Hazard Mater ; 408: 124432, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189474

RESUMO

A surface defect sandwich-structural TiO2-x/ultrathin g-C3N4/TiO2-x direct Z-scheme heterojunction photocatalyst is successfully constructed. The results manifest the existence of oxygen vacancies, sandwich structure and direct Z-scheme heterojunction. Noticeably, TiO2-x/ultrathin g-C3N4/TiO2-x efficiently eliminates high toxic tetracycline hydrochloride by means of·O2-, h+ and·OH, whose removal rate is 87.7% during 90 min and the pseudo-first-order rate constant reaches up to 31.7 min-1 × 10-3. The extraordinary performance can be attributed to the special 3D structure, Z-scheme heterojunction expediting charge transfer and promoting the generation of active species, meanwhile the oxygen vacancies enhancing the spatial separation of photo-induced carriers. Moreover, various environmental factors are systematically explored by statistics. SO42-, NH3-N and pH exhibit an obvious impact on removal rate. Meanwhile, TiO2-x/ultrathin g-C3N4/TiO2-x could also effectually remove tetracycline hydrochloride from complex actual-wastewater and exhibit high stability. Besides, the photocatalytic mechanism and degradation path of tetracycline hydrochloride are also elucidated.


Assuntos
Luz , Oxigênio , Antibacterianos , Catálise , Tetraciclina
14.
ACS Appl Mater Interfaces ; 12(36): 40328-40338, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32840995

RESUMO

Reasonable design of the nanostructure of heterogeneous photocatalysts is of great significance for improving their performance and stability. We report the design and fabrication of hollow sandwich-layered octahedral Cu2-xS/CdS/Bi2S3 p-n-p type tandem heterojunctions constructed via the continuous growth deposition method on the surface of hollow octahedral Cu2-xS with well-defined structures and interfaces. The unique hollow sandwich nanostructure has a large specific surface area and abundant reaction sites and enhances the separation and transfer of photogenerated carriers. In addition, the formation of a p-n-p heterojunction coupled with the surface plasmon resonance effect of Cu2-xS could also aid in photocatalytic H2 evolution performance and photocatalytic degradation efficiency. Under vis-NIR light irradiation, the optimized Cu2-xS/CdS/Bi2S3 photocatalyst displays a notable H2 production rate of 8012 µmol h-1 g-1, and 2,4-dichlorophenol is almost completely photocatalytically degraded in 150 min. This strategy and rational design offer a new path toward the design of specific nanocatalysts with enhanced activity and stability and challenging reactions.

15.
Environ Res ; 184: 109336, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32182480

RESUMO

Chitosan was used as crosslinking agent to load bimetal particles onto bentonite. The Fe-Al bimetal chitosan bentonite (Fe-Al bimetal @ bent) complex was prepared for the efficient removal of nitrate from wastewater and its by-products at low temperature. The samples were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Zeta potential, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area and Energy Dispersive X-ray Detector (EDX). SEM and EDX showed that Fe0 was deposited on the surface of aluminum, the Fe-Al bimetal were surrounded by chitosan and bentonite. XRD showed that Al can effectively protect the reactivity of Fe. The experimental results of nitrate removal showed that pH was the main factor affecting on nitrate removal rate and performance. The removal efficiency of nitrate wastewater with a concentration of 50 mg/L was approximately 90% in 60min. Fe-Al bimetal @ bent has better nitrate removal performance and faster reduction rate at low temperature(2-7 °C) than normal temperature (25 °C). The reason was that chitosan, bentonite and bimetal have excellent synergistic effect. It can effectively improve the reaction rate, pH buffering capacity, reduce secondary pollution and total nitrogen (TN). Fe-Al bimetal @ bent has better N2 selectivity than Fe-Al bimetal.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Bentonita , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias
16.
J Colloid Interface Sci ; 568: 255-263, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092554

RESUMO

Three-dimensional mesoporous graphite-like carbon nitride (Meso-g-C3N4/WP/Meso-g-C3N4) laminated heterojunction nanosheets are successfully synthesized by solid-phase in situ reduction combined with high temperature calcination. Meso-g-C3N4/WP/Meso-g-C3N4 has a relatively high specific surface area of 82 m2 g-1, a large pore size of 8-15 nm, and a narrow band gap of ~2.7 eV. The solar-driven photocatalytic reaction hydrogen production rate (~198.1 µmol h-1g-1) for Meso-g-C3N4/WP/Meso-g-C3N4 3D laminated heterojunctions is approximately 10 times higher than that of pristine g-C3N4. This discrepancy can be attributed to the synergistic effect of the 3D interbed heterojunction structure, which favors the spatial separation of photogenerated charge carriers due to its suitable band positions; its nanosheet structure, favoring the charge transfer to surface; and its mesoporous structures, offering more surface active sites and facilitating mass transfer. This novel sandwich-like laminated heterojunction structure offers new insights for the fabrication of other high-performance photocatalysts.

17.
J Hazard Mater ; 390: 122049, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007862

RESUMO

In this study, nanoscale zero-valent iron (NZVI) modified by ethylene glycol (EG), and then an aluminum hydroxide (Al(OH)3) film was wound on it to make a new material (EG-NZVI@Al(OH)3), it is used to remove sulfides in water and it has greatly improved the performance of sulfide removal. At different pH values, Al(OH)3 film can effectively improve the adsorption of sulfide by EG-NZVI @Al(OH)3. Al(OH)3 film can also enhance suspension stability and reduce NZVI corrosion in water. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) characterization methods were used to prove that the NZVI was successfully modified by EG and coated by Al(OH)3, achieved the role of protecting NZVI from being oxidized during preparation and drying, and enhanced suspension stability, chemical reactivity and longevity. The removal of sulfides in water by NZVI is mainly through the formation of surface complexes, iron mercapto oxide (FeOSH) and the precipitates of iron sulfide (FeS, FeS2, FeSn) adsorbed on the surface of NZVI. Al(OH)3 film is positively charged It will cause electrostatic adsorption and adsorption on sulfur ions. EG-NZVI@Al(OH)3 is used to remove sulfide from 2.5-50 mg/L aqueous solution. It shows the highest adsorption capacity is 175.5 mg/g. And the mechanism of adsorption is speculated.

18.
J Hazard Mater ; 384: 121268, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31611020

RESUMO

The dual plasmons (Bi, Ag)-based direct Z-scheme Bi3O4Cl/AgCl heterojunction ultrathin nanosheets are successfully synthesized by hydrothermal combined with solid-state reduction strategy. The plasmons Ag and Bi are formed during solid-state reduction process, which are firmly anchored on surface of Bi3O4Cl and AgCl, respectively, and favors the charge transfer obviously. Experiments results confirm the formation of heterojunction ultrathin nanosheets with the main size of 200∼300 nm and the thickness of <10 nm. The obtained dual plasmons-based direct Z-scheme Bi3O4Cl/AgCl heterojunction ultrathin nanosheets with the band gap of ∼1.66 eV exhibit excellent photothermal performance. 98.3% of Cr (VI) can be photocatalytic reduced and TOC removal rate of ceftriatone sodium reached 98.9% within 210 min, respectively. Due to the surface plasma resonance, the catalyst temperature increases obviously, indicating the enhanced photothermal performance, which is favorable for promoting the photocatalytic performance. Moreover, the cyclic stability experiment also proves the high stability and has advantages in practical applications. The excellent property can be ascribed to the direct Z-scheme accelerating charge transfer and prolonging the lifetimes, the dual plasmons enhancing photothermal performance and the spatial separation of photogenerated charge carriers.

19.
Nanotechnology ; 30(48): 485401, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31532759

RESUMO

Plasmon Ag and co-catalyst Co x P decorated mesoporous graphite carbon nitride nanosheet assemblies have been synthesized via a template-calcination and ball milling strategy combined with photoreduction. The obtained composites are characterized by x-ray diffraction, Fourier transmission infrared spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectroscopy. The results show that the sample assembly with mesoporous structure has specific surface area of 50.4 m2 g-1, pore size of 11.3 nm and pore volume of 0.21 cm3 g-1. The Ag and Co x P nanoparticles are decorated on the surface of graphite carbon nitride uniformly. Under solar light irradiation, the photocatalytic degradation rate of ceftazidime for the prepared sample assembly is up to ∼92%, and the photocatalytic reaction rate constant is about 10 times higher than that of bare graphite carbon nitride. Moreover, the sample assembly also exhibits a solar-driven photocatalytic hydrogen production rate of 96.66 µmol g-1 h-1. It can attributed to the surface plasmon resonance effect of Ag nanoparticles and Co x P co-catalyst promoting the spatial charge separation and the mesoporous structure providing more surface active sites and favoring mass transfer. This special structure offers new insights for fabricating other high-performance photocatalysts with high spatial charge separation.

20.
J Colloid Interface Sci ; 555: 203-213, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382139

RESUMO

In this study, a novel chitosan material (ECS@Ca@CTA) was prepared to significantly adsorb sodium dodecylbenzene sulfonate (SDBS). First, chitosan is complexed with CaCl2 and crosslinked into hollow spheres by glutaraldehyde (GA). However, a part of the active groups (amino group) is depleted. The amino group is crucial in CS, which can adsorb anions under acidic aqueous solutions and be functionalized by other groups. Therefore, the amino group is reactivated by ethylenediamine (EDA), then the ECS@Ca is quaternized by (3-chloro-2 hydroxypropyl) trimethylammonium chloride (CTA) and prepared to hollow sphere structure with wrinkled surface in order to improve the effect of pH on adsorption of SDBS. It is not only a simple functionalization, but a synergistic effect between the three materials (ECS@Ca@CTA) to efficiently adsorb SDBS. Thus the maximum adsorption capability of ECS@Ca@CTA is 2430, 1967 and 1116 mg g-1 at pH 3.0, 7.0 and 10.0 for SDBS, respectively. The adsorption kinetics, adsorption isotherm and reusability of ECS@Ca@CTA were studied. This paper is to provide a new environmentally friendly adsorbent material to adsorb SDBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA