Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 249: 125913, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37481187

RESUMO

Ionic conductive hydrogels prepared from various biological macromolecules are ideal materials for the manufacture of human motion sensors from the perspective of resource regeneration and environmental sustainability. However, it is now difficult to develop conductive hydrogels including excellent self-healing and mechanical properties, mainly due to their inherent trade-off between dynamic cross-linked healing and stable cross-linked mechanical strength. In this work, alkali lignin-Polyvinyl alcohol-polyacrylic acid double network conductive hydrogels with high mechanical strength and good self-healing properties were prepared. We formed the primary network structure by hydrogen bonding interaction between polyvinyl alcohol, alkali lignin and polyacrylic acid, and the secondary network structure by coordination interaction with polyacrylic acid through the addition of Fe3+. The added lignin acts as a dynamic linkage bridge in a porous network mediated by multiple ligand bonds, imparting superior mechanical properties to the hydrogels. The relationships between the alkali lignin and iron ion dosage and the comprehensive properties of hydrogels (adhesion, antibacterial, self-healing, electrical conductivity and mechanical properties) were studied in detail. On this basis, the hydrogels explored the role of lignin in the regulation of hydrogels properties and revealed the self-healing and conductive mechanism.


Assuntos
Lignina , Álcool de Polivinil , Humanos , Álcool de Polivinil/química , Hidrogéis/química , Ferro , Condutividade Elétrica , Íons/química
2.
J Phys Chem A ; 124(37): 7340-7345, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32786963

RESUMO

J-aggregates are widely used in studies of light-matter interaction and organic optoelectronic devices. Although J-aggregate films can be fabricated on salt by epitaxial growth method, the size is limited to hundreds of nanometer. In this work, with hexagonal boron nitride (h-BN) as a substrate, highly crystalline J-aggregate ultrathin films of N,N'-ditridecylperylene 3,4,9,10-tetracarboxylic diimide (PTCDI-C13) are achieved by physical vapor transport (PVT) method. Significant bathochromically shifted absorption band and narrowed 0-0 transition are observed in the monolayer PTCDI-C13 crystal on h-BN. The exciton coherence number Ncoh of monolayer J-aggregate film extracted from the photoluminescence (PL) spectrum is up to 15 at T = 140 K, which is higher than that of the epitaxially grown layer on salt. Beyond the first molecular layer, the multilayer crystal on h-BN is dominated by H-aggregates. Further study shows that that the first molecular layer on h-BN adopts the highly ordered face-on configuration, while the overlayers adopt the edge-on motif. As a comparison, only H-aggregate PTCDI-C13 ultrathin films are found on SiO2 substrates, but no J-aggregates. The results suggest that high-quality J-aggregates can be prepared by utilizing appropriate substrates via physical vapor transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA