Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920577

RESUMO

Metal-organic frameworks (MOFs) have gained significant prominence as sensing materials owing to their unique properties. However, understanding the correlation between the morphology, properties, and sensing performance in these MOF-based sensors remains a challenge, limiting their applications and potential for improvement. In this study, Zr-MOF was chosen as an ideal model to explore the impact of the MOF morphology on the sensing performance, given its remarkable stability and structural variability. Three luminescent MOFs (namely rod-like Zr-LMOF, prismoid-like Zr-LMOF, and ellipsoid-like Zr-LMOF) were synthesized by adjusting the quantities of the benzoic acid and the reaction time. More importantly, the sensing performance of these Zr-LMOFs in response to aflatoxin B1 (AFB1) was thoroughly examined. Notably, the ellipsoid-like Zr-LMOF exhibited significantly higher sensitivity compared to other Zr-LMOFs, attributed to its large specific surface area and pore volume. Additionally, an in-depth investigation into the detection mechanism of AFB1 by Zr-LMOFs was conducted. Building upon these insights, a ratiometric fluorescence sensor was developed by coordinating Eu3+ with ellipsoid-like Zr-LMOF, achieving a remarkably lower detection limit of 2.82 nM for AFB1. This study contributes to an improved comprehension of the relationship between the MOF morphology and the sensing characteristics while presenting an effective approach for AFB1 detection.


Assuntos
Aflatoxina B1 , Estruturas Metalorgânicas , Zircônio , Aflatoxina B1/análise , Estruturas Metalorgânicas/química , Zircônio/química , Limite de Detecção , Luminescência , Técnicas Biossensoriais
2.
Anal Chim Acta ; 1302: 342492, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580406

RESUMO

The rational design of DNA tracks is an effective pathway to guide the autonomous movement and high-efficiency recognition in DNA walkers, showing outstanding advantages for the cascade signal amplification of electrochemical biosensors. However, the uncontrolled distance between two adjacent tracks on the electrode could increase the risk of derailment and interruption of the reaction. Hence, a novel four-way balanced cruciform-shaped DNA track (C-DNT) was designed as a structured pathway to improve the effectiveness and stability of the reaction in DNA walkers. In this work, two kinds of cruciform-shaped DNA were interconnected as a robust structure that could avoid the invalid movement of the designed DNA walker on the electrode. When hairpin H2 was introduced onto the electrode, the strand displacement reaction (SDR) effectively triggered movements of the DNA walker along the cruciform-shaped track while leaving ferrocene (Fc) on the electrode, leading to a significant enhancement of the electrochemical signal. This design enabled the walker to move in an excellent organized and controllable manner, thus enhancing the reaction speed and walking efficiency. Compared to other walkers moving on random tracks, the reaction time of the C-DNT-based DNA walker could be reduced to 20 min. Lead ion (Pb2+) was used as a model target to evaluate the analytical performance of this biosensor, which exhibited a low detection limit of 0.033 pM along with a wide detection ranging from 0.1 pM to 500 nM. This strategy presented a novel concept for designing a high-performance DNA walker-based sensing platform for the detection of contaminants.


Assuntos
Técnicas Biossensoriais , Chumbo , DNA Cruciforme , Limite de Detecção , DNA/química , Técnicas Eletroquímicas
3.
Anal Chem ; 95(12): 5470-5478, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921316

RESUMO

Adsorption of DNA probes onto nanomaterials is a promising strategy for bioassay establishment typically using fluorescence or catalytic activities to generate signals. Albeit important, there is currently a lack of systematic understanding of the sensing behaviors building on nanomaterial-DNA interactions, which greatly limits the rational method design and their subsequent applications. Herein, the issue was investigated by employing multifunctional metal-organic frameworks (MOFs) (FeTCPP⊂UiO-66) as a model that was synthesized via integrating heme-like ligand FeTCPP into commonly used MOFs (UiO-66). Our results demonstrated that the fluorescently labeled DNA adsorbed onto FeTCPP⊂UiO-66 was quenched through photoinduced electron transfer, fluorescence resonance energy transfer, and the internal filtration effect. Among different DNA structures, double-stranded DNA and hybridization chain reaction products largely retained their fluorescence due to desorption and conformational variation, respectively. In addition, ssDNA could maximally inhibit the peroxidase activity of FeTCPP⊂UiO-66, and this inhibition was strongly dependent on the strand length but independent of base composition. On the basis of these discoveries, a fluorescence/colorimetric dual-modal detection was designed against aflatoxin B1 with satisfactory performances obtained to further verify our results. This study provided some new insights into the sensing behaviors based on MOF-DNA interactions, indicating promising applications for rational bioassay design and its performance improvement.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Compostos Organometálicos , DNA/química , Sondas de DNA/química , DNA de Cadeia Simples , Compostos Férricos/química , Nanoestruturas/química
4.
Anal Chem ; 94(38): 12981-12989, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36112535

RESUMO

The necessary step of directly adding hydrogen peroxide (H2O2) into the detection system in traditional immunoassays hampers their applications as a portable device for point-of-care analysis due to the unstable liquid form of H2O2. Herein, a strategy of self-supplying H2O2 and signal amplification triggering by copper peroxide nanodots encapsulated (CPNs) in metal-organic frameworks (ZIF-8) was proposed in an immunoassay for dual-signal detection of bisphenol A (a typical emerging organic pollutant), which was further fabricated as a lab-in-a-tube device integrated with a smartphone sensing platform. Herein, CPNs@ZIF-8 was modified on the antibody against bisphenol A; after the competitive binding of analytes, coating antigens, and antibodies, the released H2O2 and Cu2+ from encapsulated CPNs under the acidic condition will trigger a Fenton-like reaction to generate ·OH for oxidization of TMB; meanwhile, Cu2+ could quench the fluorescence of GSH-Au NCs, resulting in dual-mode signals for measurements. Most importantly, self-supplying H2O2 with high stability was undertaken by CPNs, and the remarkably increased signal molecule (CPN) loading was ascribed to the excellent capacity of metal-organic frameworks (ZIF-8). In addition, good recoveries were obtained from a colorimetric/fluorescent dual-mode strategy. The constructed device demonstrated great potential as a universal platform for rapid detection of various environmental contaminants using corresponding antibodies relying on its performance of satisfactory stability, sensitivity, and accuracy.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Compostos Benzidrílicos , Cobre/química , Poluentes Ambientais/análise , Peróxido de Hidrogênio/análise , Imunoensaio/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Peróxidos , Fenóis
5.
Anal Chem ; 94(11): 4821-4830, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35262349

RESUMO

Biomimic nanozymes coassembled by peptides or proteins and small active molecules provide an effective strategy to design attractive nanozymes. Although some promising nanozymes have been reported, rational regulation for higher catalytic activity of biomimic nanozymes remains challenging. Hence, we proposed a novel biomimic nanozyme by encapsulating the coassembly of hemin/bovine serum albumin (BSA) in zeolite imidazolate frameworks (ZIF-8) to achieve controllable tailoring of peroxidase-like activity via the confinement effect. The assembly of Hemin@BSA was inspired by the structure of horseradish peroxidase (HRP), in which hemin served as the active cofactor surrounded by BSA as a blocking pocket to construct a favorable hydrophobic space for substrate enrichment. Benefiting from the confinement effect, ZIF-8 with a porous intracavity was identified as the ideal outer layer for Hemin@BSA to accelerate substrate transport and achieve internal circulation of peroxidase-like catalysis, significantly enhancing its peroxidase-like activity. Especially, the precise encapsulation of Hemin@BSA in ZIF-8 could also prevent it from decomposition in harsh environments by rapid crystallization around Hemin@BSA to form a protective shell. Based on the improved peroxidase-like activity of Hemin@BSA@ZIF-8, several applications were successfully performed for the sensitive detection of small molecules including H2O2, glucose, and bisphenol A (BPA). Satisfactory results highlight that using a ZIF-8 outer layer to encapsulate Hemin@BSA offers a very effective and successful strategy to improve the peroxidase-like activity and the stability of biomimic nanozymes, broadening the potential application of biocatalytic metal-organic frameworks (MOFs).


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Técnicas Biossensoriais/métodos , Catálise , Hemina/química , Peróxido de Hidrogênio , Estruturas Metalorgânicas/química , Peroxidase , Soroalbumina Bovina
6.
J Hazard Mater ; 425: 127991, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34896710

RESUMO

The systematic investigation and risk assessment of dibutyl phthalate (DBP) were performed using an ultrasensitive dual-signal immunoassay in Zhenjiang, Jiangsu Province. In this study, C-dots@H-MnO2 nanohybrid were synthesized and labelled on the secondary antibody to generate fluorometric and colorimetric signals. Attributed to the efficient catalysis of carbon dots (C-dots) and the high C-dots loading of hollow manganese (IV) oxide (H-MnO2), the excellent sensitivity and low detection limits (0.243 and 0.692 µg/L respectively) were produced. Based on the proposed method, 25 water and 119 beverage samples were investigated. DBP was found in all water samples and 65.5% of beverage samples, with the concentrations varying in 16.5-32.1 µg/L and 0-553 µg/L, respectively. In addition, the mean concentration (22.9 µg/L) in waters was decreased significantly compared with that detected in 2016 (43.5 µg/L) by our Lab. For beverages, a similar phenomenon was observed by the measured concentrations from coffee. Furthermore, the potential ecological risks of DBP were evaluated, the results indicated that human activities had caused serious pollution and high risks to the local aquatic ecosystem. On the other hand, the results of health risk assessment suggested that DBP in beverages might not cause obvious side effects to local residents.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Dibutilftalato/toxicidade , Ecossistema , Humanos , Imunoensaio , Compostos de Manganês , Óxidos , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA