Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39338867

RESUMO

With the rapid development of mobile edge computing (MEC) and wireless power transfer (WPT) technologies, the MEC-WPT system makes it possible to provide high-quality data processing services for end users. However, in a real-world WPT-MEC system, the channel gain decreases with the transmission distance, leading to "double near and far effect" in the joint transmission of wireless energy and data, which affects the quality of the data processing service for end users. Consequently, it is essential to design a reasonable system model to overcome the "double near and far effect" and make reasonable scheduling of multi-dimensional resources such as energy, communication and computing to guarantee high-quality data processing services. First, this paper designs a relay collaboration WPT-MEC resource scheduling model to improve wireless energy utilization efficiency. The optimization goal is to minimize the normalization of the total communication delay and total energy consumption while meeting multiple resource constraints. Second, this paper imports a BK-means algorithm to complete the end terminals cluster to guarantee effective energy reception and adapts the whale optimization algorithm with adaptive mechanism (AWOA) for mobile vehicle path-planning to reduce energy waste. Third, this paper proposes an immune differential enhanced deep deterministic policy gradient (IDDPG) algorithm to realize efficient resource scheduling of multiple resources and minimize the optimization goal. Finally, simulation experiments are carried out on different data, and the simulation results prove the validity of the designed scheduling model and proposed IDDPG.

2.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631666

RESUMO

Unmanned aerial vehicle (UAV) collaboration has become the main means of indoor and outdoor regional search, railway patrol, and other tasks, and navigation planning is one of the key, albeit difficult, technologies. The purpose of UAV navigation planning is to plan reasonable trajectories for UAVs to avoid obstacles and reach the task area. Essentially, it is a complex optimization problem that requires the use of navigation planning algorithms to search for path-point solutions that meet the requirements under the guide of objective functions and constraints. At present, there are autonomous navigation modes of UAVs relying on airborne sensors and navigation control modes of UAVs relying on ground control stations (GCSs). However, due to the limitation of airborne processor computing power, and background command and control communication delay, a navigation planning method that takes into account accuracy and timeliness is needed. First, the navigation planning architecture of UAVs of end-cloud collaboration was designed. Then, the background cloud navigation planning algorithm of UAVs was designed based on the improved particle swarm optimization (PSO). Next, the navigation control algorithm of the UAV terminals was designed based on the multi-objective hybrid swarm intelligent optimization algorithm. Finally, the computer simulation and actual indoor-environment flight test based on small rotor UAVs were designed and conducted. The results showed that the proposed method is correct and feasible, and can improve the effectiveness and efficiency of navigation planning of UAVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA