Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612400

RESUMO

Human Immunodeficiency Virus type 1 (HIV-1)-associated neurocognitive disorders (HANDs) remain prevalent in HIV-1-infected individuals despite the evident success of combined antiretroviral therapy (cART). The mechanisms underlying HAND prevalence in the cART era remain perplexing. Ample evidence indicates that HIV-1 envelope glycoprotein protein 120 (gp120), a potent neurotoxin, plays a pivotal role in HAND pathogenesis. Methamphetamine (Meth) abuse exacerbates HANDs, but how this occurs is not fully understood. We hypothesize that Meth exacerbates HANDs by enhancing gp120-mediated neuroinflammation. To test this hypothesis, we studied the effect of Meth on gp120-induced microglial activation and the resultant production of proinflammatory cytokines in primary rat microglial cultures. Our results show that Meth enhanced gp120-induced microglial activation, as revealed by immunostaining and Iba-1 expression, and potentiated gp120-mediated NLRP3 expression and IL-1ß processing and release, as assayed by immunoblotting and ELISA. Meth also augmented the co-localization of NLRP3 and caspase-1, increased the numbers of NLRP3 puncta and ROS production, increased the levels of iNOS expression and NO production, and increased the levels of cleaved gasderminD (GSDMD-N; an executor of pyroptosis) in gp120-primed microglia. The Meth-associated effects were attenuated or blocked by MCC950, an NLRP3 inhibitor, or Mito-TEMPO, a mitochondrial superoxide scavenger. These results suggest that Meth enhances gp120-associated microglial NLRP3 activation and the resultant proinflammatory responses via mitochondria-dependent signaling.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , HIV-1 , Animais , Ratos , Glicoproteínas , Inflamassomos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR
2.
Artigo em Inglês | MEDLINE | ID: mdl-37457651

RESUMO

Despite the introduction of combined antiretroviral therapy (cART) HIV-1 virus persists in the brain in a latent or restricted manner and viral proteins, such as gp120, continue to play a significant disease-inciting role. Gp120 is known to interact with N-methyl-D-aspartate (NMDA) receptors (NMDARs) resulting in neuronal injury. Glutamate is the main excitatory neurotransmitter in the brain and plays an important role in cognitive function and dysregulation of excitatory synaptic transmission impairs neurocognition. It is our hypothesis that gp120 may alter synaptic function via modulating glutamate function from a physiological molecule to a pathophysiological substance. To test this hypothesis, we studied the modulatory effects of gp120 and glutamate on NMDAR-mediated spontaneous excitatory postsynaptic current (sEPSCNMDAR) and dynamic dendritic spine changes in rat cortical neuronal cultures. Our results revealed that gp120 and glutamate each, at low concentrations, had no significant effects on sEPSCNMDAR and dendritic spines, but increased sEPSCNMDAR frequency, decreased numbers of dendritic spines when tested in combination. The observed effects were blocked by either a CXCR4 blocker or an NMDAR antagonist, indicating the involvements of chemokine receptor CXCR4 and NMDARs in gp120 modulation of glutamate effects. These results may imply a potential mechanism for HIV-1-associated neuropathogenesis in the cART era.

3.
Viruses ; 15(5)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37243203

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of the coronavirus disease 2019 (COVID-19) pandemic, a fatal respiratory illness. The associated risk factors for COVID-19 are old age and medical comorbidities. In the current combined antiretroviral therapy (cART) era, a significant portion of people living with HIV-1 (PLWH) with controlled viremia is older and with comorbidities, making these people vulnerable to SARS-CoV-2 infection and COVID-19-associated severe outcomes. Additionally, SARS-CoV-2 is neurotropic and causes neurological complications, resulting in a health burden and an adverse impact on PLWH and exacerbating HIV-1-associated neurocognitive disorder (HAND). The impact of SARS-CoV-2 infection and COVID-19 severity on neuroinflammation, the development of HAND and preexisting HAND is poorly explored. In the present review, we compiled the current knowledge of differences and similarities between SARS-CoV-2 and HIV-1, the conditions of the SARS-CoV-2/COVID-19 and HIV-1/AIDS syndemic and their impact on the central nervous system (CNS). Risk factors of COVID-19 on PLWH and neurological manifestations, inflammatory mechanisms leading to the neurological syndrome, the development of HAND, and its influence on preexisting HAND are also discussed. Finally, we have reviewed the challenges of the present syndemic on the world population, with a particular emphasis on PLWH.


Assuntos
COVID-19 , Infecções por HIV , Soropositividade para HIV , HIV-1 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , SARS-CoV-2 , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/etiologia , Sistema Nervoso Central , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia
4.
Res Sq ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168345

RESUMO

Background: Human Immunodeficiency Virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) remain prevalent in HIV-1-infected individuals despite the evident success of combined antiretroviral therapy (cART). The mechanisms under HAND prevalence in the cART era remain perplexing. Ample evidence indicates that HIV-1 envelope glycoprotein protein 120 (gp120), a potent neurotoxin, plays a pivotal role in the HAND pathogenesis. Methamphetamine (Meth) abuse exacerbates HAND. How Meth exacerbates HAND is not fully understood. This study was to test the hypothesis that Meth exacerbates HAND by enhancing gp120-mediated proinflammatory responses in the brain, worsening the pathogenesis of HAND. Methods: Experiments were carried out on primary microglial cultures prepared from neonatal SD rats. The purity of microglia was determined by staining with anti-CD11b. Meth and gp120 were applied to microglial cultures. Microglial activation was revealed by immunostaining and Iba-1 expression. The protein expression levels of Pro-IL-1ß, Il-1ß, Iba-1, iNOS, NLRP3, GSDMD and GSDMD-N were detected by western blotting analyses. The levels of proinflammatory cytokine and NO production in the microglia culture supernatants were assayed by ELISA and Griess reagent systems, respectively. NLRP3 activation was uncovered by fluorescent microscopy images displaying NLRP3 puncta labeled by anti-NLRP3 antibody. NLRP3 co-localization with caspase-1 was labeled with antibodies. One-way ANOVA with post hoc Tukey's multiple comparison tests was employed for statistical analyses. Results: Meth enhanced gp120-induced microglia activation revealed by immunostaining and Iba-1 expression, and potentiated gp120-mediated NLRP3 expression, IL-1ß processing and release assayed by immunoblot and ELISA. Meth also augmented the co-localization of NLRP3 and caspase-1, increased the numbers of NLRP3 puncta and ROS production, elevated levels of iNOS expression and NO production, and enhanced levels of cleaved gasderminD (GSDMD-N, an executor of pyroptosis) in gp120-primed microglia. The Meth-associated effects were attenuated or blocked by MCC950, an NLRP3 inhibitor, or Mito-TEMPO, a mitochondrial superoxide scavenger, indicating the involvement of mitochondria in Meth enhancement of NLRP3 inflammasome activation in gp120-primed microglia. Conclusions: These results suggest that Meth enhanced gp120-associated microglial NLRP3 activation and resultant proinflammatory responses via mitochondria-dependent signaling.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35891930

RESUMO

Despite the introduction of vaccines and drugs for SARS-CoV-2, the COVID-19 pandemic continues to spread throughout the world. In severe COVID-19 patients, elevated levels of proinflammatory cytokines have been detected in the blood, lung cells, and bronchoalveolar lavage, which is referred to as a cytokine storm, a consequence of overactivation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome and resultant excessive cytokine production. The hyperinflammatory response and cytokine storm cause multiorgan impairment including the central nervous system, in addition to a detriment to the respiratory system. Hyperactive NLRP3 inflammasome, due to dysregulated immune response, is the primary cause of COVID-19 severity. The severity could be enhanced due to viral evolution leading to the emergence of mutated variants of concern, such as delta and omicron. In this review, we elaborate on the inflammatory responses associated with the NLRP3 inflammasome activation in COVID-19 pathogenesis, the mechanisms for the NLRP3 inflammasome activation and pathway involved, cytokine storm, and neurological complications as long-term consequences of SARS-CoV-2 infection. Also discussed is the therapeutic potential of NLRP3 inflammasome inhibitors for the treatment of COVID-19.

6.
BMC Neurosci ; 23(1): 20, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354428

RESUMO

BACKGROUND: C-C motif chemokine ligand 2 (CCL2) is reported to be involved in the pathogenesis of various neurological and/or psychiatric diseases. Tissue or cellular expression of CCL2, in normal or pathological condition, may play an essential role in recruiting monocytes or macrophages into targeted organs, and be involved in a certain pathogenic mechanism. However, few studies focused on tissue and cellular distribution of the CCL2 peptide in brain grey and white matters (GM, WM), and the changes of the GM and WM cellular CCL2 level in septic or endotoxic encephalopathy was not explored. Hence, the CCL2 cellular distribution in the front brain cortex and the corpus callosum (CC) was investigated in the present work by using immunofluorescent staining. RESULTS: (1) CCL2 like immunoreactivity (CCL2-ir) in the CC is evidently higher than the cortex. When the measurement includes ependymal layer attached to the CC, CCL2-ir intensity is significantly higher than cortex. (2) Structures in perivascular areas, most of them are GFAP positive, contribute major CCL2-ir positive profiles in both GM and WM, but apparently more in the CC, where they are bilaterally distributed in the lateral CC between the cingulate cortex and ventricles. (3) The neuron-like CCL2-ir positive cells in cortex are significantly more than in the CC, and that number is significantly increased in the cortex following systemic lipopolysaccharide (LPS), but not in the CC. (4) In addition to CCL2-ir positive perivascular rings, more CCL2-ir filled cashew shape elements are observed, probably inside of microvasculature, especially in the CC following systemic LPS. (5) Few macrophage/microglia marker-Iba-1 and CCL2-ir co-labeled structures especially the soma is found in normal cortex and CC; the co-localizations are significantly augmented following systemic LPS, and co-labeled amoeba like somata are presented. (6) CCL2-ir and astrocyte marker GFAP or Iba-1 double labeled structures are also observed within the ependymal layer. No accumulation of neutrophils was detected. CONCLUSION: There exist differences in the cellular distribution of the CCL2 peptide in frontal cortex GM and subcortical WM-CC, in both the physiological condition and experimental endotoxemia. Which might cause different pathological change in the GM and WM.


Assuntos
Corpo Caloso , Lipopolissacarídeos , Animais , Lobo Frontal , Ligantes , Microglia/metabolismo
7.
ACS Chem Neurosci ; 13(8): 1232-1244, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35312284

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder. Pathologically, the disease is characterized by the deposition of amyloid beta (Aß) plaques and the presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aß plaque accumulation pharmacologically was achieved, how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aß plaques, oxidative stress, inflammation, and AD signs and symptoms. In particular, CeO2 nanoparticles (CeO2NPs) induce free-radical-scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. To investigate whether CeO2NPs affect microglia neurotoxic responses, a novel formulation of europium-doped CeO2NPs (EuCeO2NPs) was synthesized. We then tested EuCeO2NPs for its ability to generate cellular immune homeostasis in AD models. EuCeO2NPs attenuated microglia BV2 inflammatory activities after Aß1-42 exposure by increasing the cells' phagocytic and Aß degradation activities. These were associated with increases in the expression of the CD36 scavenger receptor. EuCeO2NPs facilitated Aß endolysosomal trafficking and abrogated microglial inflammatory responses. We posit that EuCeO2NPs may be developed as an AD immunomodulator.


Assuntos
Doença de Alzheimer , Nanopartículas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cério , Európio/metabolismo , Homeostase , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/metabolismo
8.
Neurobiol Dis ; 168: 105712, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337950

RESUMO

Methamphetamine (Meth) abuse and human immunodeficiency virus type 1 (HIV-1) infection are two major public health problems worldwide. Being frequently comorbid with HIV-1 infection, Meth abuse exacerbates neurocognitive impairment in HIV-1-infected individuals even in the era of combined antiretroviral therapy. While a large body of research have studied the individual effects of Meth and HIV-1 envelope glycoprotein 120 (gp120) in the brain, far less has focused on their synergistic influence. Moreover, it is well-documented that the hippocampus is the primary site of spatial learning and long-term memory formation. Dysregulation of activity-dependent synaptic transmission and plasticity in the hippocampus is believed to impair neurocognitive function. To uncover the underlying mechanisms for increased incidence and severity of HIV-1-associated neurocognitive disorders (HAND) in HIV-1-infected patients with Meth abuse, we investigated acute individual and combined effects of Meth (20 µM) and gp120 (200 pM) on synaptic transmission and plasticity in the CA1 region of young adult male rat hippocampus, a brain region known to be vulnerable to HIV-1 infection. Our results showed that acute localized application of Meth and gp120 each alone onto the CA1 region reduced short-term dynamics of input-output responses and frequency facilitation, and attenuated long-term potentiation (LTP) induced by either high frequency stimulation or theta burst stimulation. A synergistic augmentation on activity-dependent synaptic plasticity was observed when Meth and gp120 were applied in combination. Paired-pulse facilitation results exhibited an altered facilitation ratio, suggesting a presynaptic site of action. Further studies revealed an involvement of microglia NLRP3 inflammasome activation in Meth augmentation of gp120-mediated attenuation of LTP. Taken together, our results demonstrated Meth augmented gp120 attenuation of LTP in the hippocampus. Since LTP is the accepted experimental analog of learning at the synaptic level, such augmentation may underlie Meth exacerbation of HAND observed clinically.


Assuntos
Infecções por HIV , HIV-1 , Metanfetamina , Animais , Glicoproteínas/farmacologia , Infecções por HIV/complicações , Hipocampo , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Metanfetamina/farmacologia , Transtornos Neurocognitivos , Plasticidade Neuronal , Ratos , Transmissão Sináptica
9.
Front Cell Neurosci ; 15: 679413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239419

RESUMO

Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. IL-17 level is significantly increased in inflammatory conditions of the CNS, including but not limited to post-stroke and multiple sclerosis. IL-17 has been detected direct toxicity on oligodendrocyte (Ol) lineage cells and inhibition on oligodendrocyte progenitor cell (OPC) differentiation, and thus promotes myelin damage. The cellular mechanism of IL-17 in CNS inflammatory diseases remains obscure. Voltage-gated K+ (Kv) channel 1.3 is the predominant Kv channel in Ol and potentially involved in Ol function and cell cycle regulation. Kv1.3 of T cells involves in immunomodulation of inflammatory progression, but the role of Ol Kv1.3 in inflammation-related pathogenesis has not been fully investigated. We hypothesized that IL-17 induces myelin injury through Kv1.3 activation. To test the hypothesis, we studied the involvement of OPC/Ol Kv1.3 in IL-17-induced Ol/myelin injury in vitro and in vivo. Kv1.3 currents and channel expression gradually decreased during the OPC development. Application of IL-17 to OPC culture increased Kv1.3 expression, leading to a decrease of AKT activation, inhibition of proliferation and myelin basic protein reduction, which were prevented by a specific Kv1.3 blocker 5-(4-phenoxybutoxy) psoralen. IL-17-caused myelin injury was validated in LPC-induced demyelination mouse model, particularly in corpus callosum, which was also mitigated by aforementioned Kv1.3 antagonist. IL-17 altered Kv1.3 expression and resultant inhibitory effects on OPC proliferation and differentiation may by interrupting AKT phosphorylating activation. Taken together, our results suggested that IL-17 impairs remyelination and promotes myelin damage by Kv1.3-mediated Ol/myelin injury. Thus, blockade of Kv1.3 as a potential therapeutic strategy for inflammatory CNS disease may partially attribute to the direct protection on OPC proliferation and differentiation other than immunomodulation.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33815666

RESUMO

NMDA receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the central nervous system. Anti-NMDA receptor (anti-NMDAR) encephalitis is an autoimmune disease characterized by the presence of autoantibodies against the NMDAR GluN1 subunit. Here we briefly review current advances in the understanding of the mechanisms underlying the pathogenesis of anti-NMDAR encephalitis. The autoantibodies bind to and cross-link the endogenous NMDARs, disrupt the interaction of NMDARs with receptor tyrosine kinase EphB2 leading to internalization and reduced function of NMDARs. Hypofunction of the NMDARs results in impairment in long-term potentiation and deficit in learning and memory, leads to development of depression-like behavior, and lowers the threshold for seizures. Recent development of active immunization models of anti-NMDAR encephalitis provides insight into the inflammation process and paves the way for further studies that may lead to better treatment.

11.
J Neuroinflammation ; 18(1): 100, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902641

RESUMO

BACKGROUND: Microglia are resident innate immune cells in the brain, and activation of these myeloid cells results in secretion of a variety of pro-inflammatory molecules, leading to the development of neurodegenerative disorders. Lipopolysaccharide (LPS) is a widely used experimental stimulant in microglia activation. We have previously shown that LPS produced microglia activation and evoked detectable functional abnormalities in rat corpus callosum (CC) in vitro. Here, we further validated the effects of low-dose LPS-induced microglia activation and resultant white matter abnormality in the CC in an animal model and examined its attenuation by an anti-inflammatory agent minocycline. METHODS: Twenty-four SD rats were divided randomly into three groups and intra-peritoneally injected daily with saline, LPS, and LPS + minocycline, respectively. All animals were subject to MRI tests 6 days post-injection. The animals were then sacrificed to harvest the CC tissues for electrophysiology, western blotting, and immunocytochemistry. One-way ANOVA with Tukey's post-test of all pair of columns was employed statistical analyses. RESULTS: Systemic administration of LPS produced microglial activation in the CC as illustrated by Iba-1 immunofluorescent staining. We observed that a large number of Iba-1-positive microglial cells were hyper-ramified with hypertrophic somata or even amoeba like in the LPS-treated animals, and such changes were significantly reduced by co-administration of minocycline. Electrophysiological recordings of axonal compound action potential (CAP) in the brain slices contained the CC revealed an impairment on the CC functionality as detected by a reduction in CAP magnitude. Such an impairment was supported by a reduction of fast axonal transportation evidenced by ß-amyloid precursor protein accumulation. These alterations were attenuated by minocycline, demonstrating minocycline reduction of microglia-mediated interruption of white matter integrity and function in the CC. CONCLUSIONS: Systemic administration of LPS produced microglia activation in the CC and resultant functional abnormalities that were attenuated by an anti-inflammatory agent minocycline.


Assuntos
Corpo Caloso/patologia , Microglia/patologia , Minociclina/uso terapêutico , Animais , Antibacterianos/farmacologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/fisiopatologia , Lipopolissacarídeos/farmacologia , Imageamento por Ressonância Magnética , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia
12.
Eur J Neurosci ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33725384

RESUMO

Recent observations indicate that cerebral white matter (WM) exhibits a higher chemoattractant capability for immune cells. The C-C motif chemokine ligands 2 and 3 (CCL2, CCL3) are key chemokines for monocytes and T cells. However, tissue differential of these chemokines is unclear, although the higher CCL2/3 mRNA levels were found in rodent WM. It has been shown that more immune cells infiltrated to WM than to grey matter (GM) in multiple sclerosis (MS) and human/simian immunodeficiency virus (HIV/SIV)-infected brains. More nodular lesions have also been identified in the WM of patients with MS or HIV/SIV encephalitis. We hypothesize that higher levels of CCL2/3 in the WM may associate with neuropathogenesis. To test this hypothesis, we compared CCL2 and CCL3 peptide levels in WM and GM of rat and human, and found both were significantly higher in the WM. Next, we tested the effect of CCL2 on primary rat microglia migration and observed a dose-dependent migratory pattern. Then, we assessed effects of WM and GM homogenates on microglia chemotaxis and observed significant stronger effects of WM than GM in a concentration-dependent manner. The concentration-dependent pattern of tissue homogenates on chemotaxis was similar to the effect of CCL2. Finally, we found the chemoattractant effects of WM on microglia were significantly attenuated by addition of a CCL2 receptor blocker to culture medium and a neutralizing antibody against CCL3 functional motif in the WM homogenate. Taking together, these results suggest that CCL2/3 played significant roles in the microglia chemotaxis toward WM homogenate.

13.
Exp Neurol ; 320: 112988, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254519

RESUMO

The voltage-gated potassium (Kv) channel blockers tetraethylammonium (TEA) and 4-aminopyridine (4-AP) have shown beneficial effects on some neurological disorders. But their involvements in diabetes-associated cognitive dysfunction are still unknown. The present study aims to investigate whether the blockade of Kv channels by TEA and 4-AP alleviate cognitive decline in diabetes. In vivo, the effects of TEA and 4-AP (5 mg/kg body weight per day, 1 mg/kg body weight per day intraperitoneal injected for 4 weeks, respectively) were investigated in streptozotocin-induced C57BL/6 diabetic mice. In vitro study, we investigated the effects of TEA and 4-AP on the high glucose (HG) -stimulated primary cortical neurons. The results showed that TEA and 4-AP ameliorated the cognitive decline of diabetic mice in the Morris water maze test, improved the ultrastructure of pancreatic ß cells, hippocampal neurons and synapses, decreased oxidative stress, modulated apoptosis-related proteins, and activated phosphatidylinositol 3-kinase (PI3K)/ Protein kinase-B (PKB or Akt) signaling pathway. In the HG-stimulated primary cultured cortical neurons, TEA and 4-AP increased the cell viability, decreased oxidative stress; prevented apoptosis and activated PI3K/Akt signaling pathway. Additionally, the PI3K inhibitor LY294002 partially abolished the effects of TEA and 4-AP. These findings indicate that the blockade of Kv channels by TEA and 4-AP ameliorates the diabetes-associated cognitive dysfunction via PI3K/Akt pathway, suggesting that targeting Kv channels could be a promising strategy for the treatments of cognitive impairments in diabetes.


Assuntos
Disfunção Cognitiva/etiologia , Diabetes Mellitus Experimental/complicações , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , 4-Aminopiridina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tetraetilamônio/farmacologia
14.
J Biomed Res ; 34(4): 292-300, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32525497

RESUMO

Immune cell accumulation and white matter anomaly are common features of HIV (human immunodeficiency virus) -infected patients in combination antiretroviral therapy (cART) era. Neuroimaging tests on cART treated patients displayed prominent diffuse white matter lesions. Notably, immune cell nodular lesion (NL) was a conspicuous type of pathological change in HIV/SIV (simian immunodeficiency virus) infected brain before cART. Therefore, we used SIV infected brain to investigate the distribution of those NLs in gray and white matters. We found a significant higher number of NLs in white matter than that in gray matter. However, virus infection correlated with macrophage NLs but not with microglia NLs, especially in white matter. In addition, NLs interrupted white matter integrity more severely, since even tiny nodules could disconnect nerve fibers in white matter tracts. In the gray matter with dense myelinated axons, NLs obviously encroached those fibers; in the area of few myelinated axons, small nodules well co-localized with extracellular matrix between neurons.

15.
J Biomed Res ; 33(3): 192-200, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30403198

RESUMO

Over the recent years, it has been found that microglia pseudopodia contact synapses, detect sick ones and prune them, even in adult animals. Myelinated nerves also carry out plasticity in which microglia remove myelin debris by phagocytosis. However, it remains unknown whether microglia explore structures on nerve fibers, such as Ranvier's node (RN) or myelin sheath, before they become debris. By double or triple staining RNs or myelin sheathes and microglia in healthy rat corpus callosum, this study unveiled direct contacts of microglia pseudopodia with RNs and with para- and inter-nodal myelin sheathes, which was then verified by electron microscopic observations. Our data indicated that microglia also explore unmyelinated nerve fibers. Furthermore, we used the animals with matured white matter; therefore, microglia may be actively involved in plasticity of matured white matter tracts as it does for synapse pruning, instead of only passively phagocytize myelin debris.

16.
J Neuroimmune Pharmacol ; 13(2): 237-253, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29492824

RESUMO

Methamphetamine (Meth) is an addictive psychostimulant abused worldwide. Ample evidence indicate that chronic abuse of Meth induces neurotoxicity via microglia-associated neuroinflammation and the activated microglia present in both Meth-administered animals and human abusers. The development of anti-neuroinflammation as a therapeutic strategy against Meth dependence promotes research to identify inflammatory pathways that are specifically tied to Meth-induced neurotoxicity. Currently, the exact mechanisms for Meth-induced microglia activation are largely unknown. NLRP3 is a well-studied cytosolic pattern recognition receptor (PRR), which promotes the assembly of the inflammasome in response to the danger-associated molecular patterns (DAMPs). It is our hypothesis that Meth activates NLRP3 inflammasome in microglia and promotes the processing and release of interleukin (IL)-1ß, resulting in neurotoxic activity. To test this hypothesis, we studied the effects of Meth on IL-1ß maturation and release from rat cortical microglial cultures. Incubation of microglia with physiologically relevant concentrations of Meth after lipopolysaccharide (LPS) priming produced an enhancement on IL-1ß maturation and release. Meth treatment potentiated aggregation of inflammasome adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), induced activation of the IL-1ß converting enzyme caspase-1 and produced lysosomal and mitochondrial impairment. Blockade of capase-1 activity, lysosomal cathepsin B activity or mitochondrial ROS production by their specific inhibitors reversed the effects of Meth, demonstrating an involvement of inflammasome in Meth-induced microglia activation. Taken together, our results suggest that Meth triggers microglial inflammasome activation in a manner dependent on both mitochondrial and lysosomal danger-signaling pathways.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Inflamassomos/efeitos dos fármacos , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Neuroimunomodulação/imunologia , Animais , Células Cultivadas , Feminino , Interleucina-1beta/biossíntese , Interleucina-1beta/imunologia , Lipopolissacarídeos , Microglia/imunologia , Microglia/metabolismo , Ratos , Ratos Sprague-Dawley
17.
J Biomed Res ; 32(2): 136-144, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29358565

RESUMO

Microglia activation and white matter injury coexist after repeated episodes of mild brain trauma and ischemic stroke. Axon degeneration and demyelination can activate microglia; however, it is unclear whether early microglia activation can impair the function of white matter tracts and lead to injury. Rat corpus callosum (CC) slices were treated with lipopolysaccharide (LPS) or LPS + Rhodobacter sphaeroides (RS)-LPS that is a toll-like receptor 4 (TLR-4) antagonist. Functional changes reflected by the change of axon compound action potentials (CAPs) and the accumulation of ß-amyloid precursor protein (ß-APP) in CC nerve fibers. Microglia activation was monitored by ionized calcium binding adaptor-1 immunofluorescent stain, based on well-established morphological criteria and paralleled proportional area measurement. Input-output (I/O) curves of CAPs in response to increased stimuli were significantly downshifted in a dose-dependent manner in LPS (0.2, 0.5 and 1.0 µg/mL)-treated slices, implying that axons neurophysiological function was undermined. LPS caused significant ß-APP accumulation in CC tissues, reflecting the deterioration of fast axon transport. LPS-induced I/O curve downshift and ß-APP accumulation were significantly reversed by the pre-treatment or co-incubation with RS-LPS. RS-LPS alone did not change the I/O curve. The degree of malfunction was correlated with microglia activation, as was shown by the measurements of proportional areas. Function of CC nerve fibers was evidently impaired by microglia activation and reversed by a TLP-4 antagonist, suggesting that the TLP-4 pathway lead to microglia activation.

18.
Oncotarget ; 8(40): 68415-68438, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978127

RESUMO

HIV-1 clades are known to be one of the key factors implicated in modulating HIV-associated neurocognitive disorders. HIV-1 B and C clades account for the majority of HIV-1 infections, clade B being the most neuropathogenic. The mechanisms behind HIV-mediated neuropathogenesis remain the subject of active research. We hypothesized that HIV-1 gp120 clade B and C proteins may exert differential proliferation, cell survival and NeuroAIDS effects in human astrocytoma cells via the Unfolded Protein Response, an endoplasmic reticulum- based cytoprotective mechanism. The differential effect of gp120 clade B and C was evaluated using for the first time a Tandem Mass Tag isobaric labeling quantitative proteomic approach. Flow cytometry analyses were performed for cell cycle and cell death identification. Among the proteins differentiated by HIV-1 gp120 proteins figure cytoskeleton, oxidative stress, UPR markers and numerous glycolytic metabolism enzymes. Our results demonstrate that HIV-1 gp120 B induced migration, proliferative and protective responses granted by the expression of GRP78, while HIV-1 gp120 C induced the expression of key inflammatory and pro-apoptotic markers. These novel findings put forward the first evidence that GRP78 is a key player in HIV-1 clade B and C neuropathogenic discrepancies and can be used as a novel target for immunotherapies.

19.
Brain Res Bull ; 135: 25-32, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28919433

RESUMO

Human immunodeficiency virus (HIV)-associated neuropathic pain is common, and studies have shown that HIV envelope glycoprotein 120 (gp120) can directly stimulate primary sensory afferent neurons causing hyperalgesia. The P2X7 receptor in the dorsal root ganglia (DRG) is involved in pain transmission and is closely related to the inflammatory and immune response. In this study, we aimed to explore the role of the P2X7 receptor in gp120-induced neuropathic pain using a rat model specific for this type of pain. The results showed that mechanical hyperalgesia, thermal hyperalgesia and P2X7 expression levels were increased in rats treated with gp120. The P2X7 antagonist, brilliant blue G (BBG), decreased hyperalgesia and P2X7 expression levels in rats treated with gp120. BBG also decreased IL-1ß and TNF-α receptor expression and ERK1/2 phosphorylation levels and increased IL-10 expression in the gp120-treated rat DRG. In addition, P2X7 agonist (BzATP)-activated currents in DRG neurons cultured with gp120 were larger than those in control neurons, and the inhibitory effect of BBG on BzATP-induced currents in gp120-treated DRG neurons was larger than that in control neurons. Therefore, inhibition of the P2X7 receptor in rat DRG relieved gp120-induced mechanical hyperalgesia and thermal hyperalgesia.


Assuntos
Gânglios Espinais/metabolismo , Proteína gp120 do Envelope de HIV/fisiologia , Hiperalgesia/fisiopatologia , Neuralgia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Gânglios Espinais/fisiopatologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/fisiopatologia , Hiperalgesia/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Masculino , Neuralgia/etiologia , Neurônios/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
20.
Artigo em Inglês | MEDLINE | ID: mdl-28694920

RESUMO

Methamphetamine (Meth) is an addictive psychostimulant widely abused around the world. The chronic use of Meth produces neurotoxicity featured by dopaminergic terminal damage and microgliosis, resulting in serious neurological and behavioral consequences. Ample evidence indicate that Meth causes microglial activation and resultant secretion of pro-inflammatory molecules leading to neural injury. However, the mechanisms underlying Meth-induced microglial activation remain to be determined. In this review, we attempt to address the effects of Meth on human immunodeficiency virus (HIV)-associated microglia activation both in vitro and in-vivo. Meth abuse not only increases HIV transmission but also exacerbates progression of HIV-associated neurocognitive disorders (HAND) through activation of microglia. In addition, the therapeutic potential of anti-inflammatory drugs on ameliorating Meth-induced microglia activation and resultant neuronal injury is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA