Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170571, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309336

RESUMO

Metal oxides-modified biochars have been widely studied as promising adsorbents for removing phosphate from wastewater discharge. Yet, the low adsorption selectivity towards phosphate severely limits its potential in practical applications. In this study, MgO-modified biochar modified by hydroxyl and amino groups (OH/NH2@MBC) is developed for selective phosphorus recovery from wastewater. As major results, the OH/NH2@MBC exhibits favorable phosphate adsorption performance is superior to that of MBC resin in the presence of co-existing anions (NO3-, Cl-, HCO3- and SO42-) and natural organic matter (humic acid) even actual wastewater, suggesting its superior selectivity towards phosphate. The OH/NH2@MBC shows an excellent phosphate adsorption capacity (43.27 mg/g) and desorption ratio (82.34 %) after five cycles under the condition of anion coexistence (100 mg/L). The experimental and DFT theoretical study reveals that attaching hydroxyl and amino groups onto the MBC surface, which facilitates to inhibiting the side effects of anions (NO3-, Cl-, HCO3-, and SO42-) through Lewis acid-base sites, hydrogen bonds, and metal affinity, and preferentially select adsorption P, contributing greatly to improve phosphate adsorption selectivity. Importantly, the presence of amino and hydroxyl groups can reduce the Fermi level of OH/NH2@MgO(220) and OH/NH2@MgO(200) and improve the adsorption selection for HPO42-. This study provides an effective strategy for enhancing the adsorption selectivity of metal oxides-modified biochars towards phosphate through modifying functional groups.

2.
J Colloid Interface Sci ; 650(Pt A): 934-942, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453317

RESUMO

Single atoms catalysts (SACs) have promising development in electrocatalytic energy conversion. Nevertheless, rational design SACs with reversible oxygen electrocatalysis still remain challenge. Herein, we synthesized atomically dispersed Zn with N defect on three-dimensional (3D) biomimetic carbon nanotubes by secondary pyrolysis (Zn-N-C-2), which possesses excellent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalytic activities. The biomimetic 3D structure and unique "leaf-branch" system are beneficial to fully expose the active sites. Density functional theory (DFT) calculations show that Zn-N3-D can optimize the charge distribution and facilitate electron transfer step of OH*→O*. Zn-N-C-2 exhibits higher ORR activity than commercial Pt/C with a half-wave potential (E1/2) of 0.85 V and OER overpotential of 450 mV at 10 mA cm-2. After being assembled into the air cathode of aqueous Zn-air battery (ZAB), it demonstrates superior performances with long-term charge and discharge for more than 200 h. This work not only clarifies the controlled synthesis of N-defects Zn SACs with excellent bifunctional electrocatalyst, but also provide in-depth understanding of structural-performance relationships by regulating local microenvironments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA