Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718194

RESUMO

Twisted moiré superlattice is featured with its moiré potential energy, the depth of which renders an effective approach to strengthening the exciton-exciton interaction and exciton localization toward high-performance quantum photonic devices. However, it remains as a long-standing challenge to further push the limit of moiré potential depth. Herein, owing to the pz orbital induced band edge states enabled by the unique sp-C in bilayer γ-graphdiyne (GDY), an ultradeep moiré potential of ∼289 meV is yielded. After being twisted into the hole-to-hole layer stacking configuration, the interlayer coupling is substantially intensified to augment the lattice potential of bilayer GDY up to 475%. The presence of lateral constrained moiré potential shifts the spatial distribution of electrons and holes in excitons from the regular alternating mode to their respective separated and localized mode. According to the well-established wave function distribution of electrons contained in excitons, the AA-stacked site is identified to serve for exciton localization. This work extends the materials systems available for moiré superlattice design further to serial carbon allotropes featured with benzene ring-alkyne chain coupling, unlocking tremendous potential for twistronic-based quantum device applications.

2.
Angew Chem Int Ed Engl ; 61(42): e202211094, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36042541

RESUMO

π electron configuration plays a pivotal role in metal-free carbon catalysts, and its delocalization degree overwhelmingly dominates catalytic activity. However, precise and targeted regulation of inherent π electrons still remain challenging. Here, one chemical-bond-targeted physical clipping strategy is proposed and effectively adopted in the cutting-edge carbon material system of graphdiyne (GDY) as a concept-of-proof. The delocalized electrons are expected to be periodically reformatted for substantially enhancing π electron delocalization. Via theoretical screening and well-designed experiments, periodical interruption of Csp-Csp2 bonds in GDY can render sp-C sites with decent activity, ultimately yielding top-ranking electrocatalytic performance without intentionally introducing external decoration. The as-proposed concept endows a universal prescription to push the limit of delocalization degree, thus shedding novel light on the rational design of decent metal-free catalysts.

3.
Adv Mater ; 34(14): e2109998, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112404

RESUMO

Rubidium cation (Rb+ ) addition is witnessed to play a pivotal role in boosting the comprehensive performance of organic-inorganic hybrid perovskite solar cells. However, the origin of such success derived from irreplaceable superiorities brought by Rb+ remains ambiguous. Herein, grain-boundary-including atomic models are adopted for the accurate theoretical analysis of practical Rb+ distribution in perovskite structures. The spatial distribution, covering both the grain interiors and boundaries, is thoroughly identified by virtue of synchrotron-based grazing-incidence X-ray diffraction. On this basis, the prominent elevation of the halogen vacancy formation energy, improved charge-carrier dynamics, and the electronic passivation mechanism in the grain interior are expounded. As evidenced by the increased energy barrier and suppressed microcurrent, the critical role of Rb+ addition in blocking the diffusion pathway along grain boundaries, inhibiting halide phase segregation, and eventually enhancing intrinsic stability is elucidated. Hence, the linkage avalanche effect of occupied location dominated by subtle changes in Rb+ concentration on electronic defects, ion migration, and phase stability is completely investigated in detail, shedding a new light on the advancement of high-efficiency cascade-incorporating strategies and perovskite compositional engineering.

4.
Nano Lett ; 22(4): 1467-1474, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133160

RESUMO

Fundamental understanding of ion migration inside perovskites is of vital importance for commercial advancements of photovoltaics. However, the mechanism for external ions incorporation and its effect on ion migration remains elusive. Herein, taking K+ and Cs+ co-incorporated mixed halide perovskites as a model, the impact of external ions on ion migration behavior has been interpreted via multiple dimensional characterization aspects. The space-effect on phase segregation inhibition has been revealed by the photoluminescence evolution and in situ dynamic cathodoluminescence behaviors. The plane-effect on current suppression along grain boundary has been evidenced via visualized surface current mapping, local current hysteresis, and time-resolved current decay. And the point-effect on activation energy incremental for individual ions has been also probed by cryogenic electronic quantification. All these results sufficiently demonstrate the passivated ion migration results in the eventually improved phase stability of perovskite, of which the origin lies in various ion migration energy barriers.

5.
Bioresour Technol ; 247: 36-43, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946092

RESUMO

Microalgal wastewater treatment has been considered as one of the most promising measures to treat nitrogen and phosphorus in the municipal wastewater. While the municipal wastewater provides sufficient nitrogen and phosphorus for microalgal growth, the microalgae still faces serious biological contamination caused by bacteria in wastewater. In this study, the commercial granular activated carbon (GAC) was added into the simulated municipal wastewater to avoid the influence of bacteria on the growth of microalgae. The extracellular organic matter (EOM) in microalgal broth was then characterized to enlighten the role of GAC in reducing the bioavailability of EOM. The results showed that the GAC addition could increase the dry weight of microalgae from 0.06mgL-1 to 0.46mgL-1 under the condition of bacterial inoculation. The GAC could mitigate bacterial contamination mainly due to its adsorption of both bacteria and EOM that might contain algicidal extracellular substances. Moreover, compared to the control group, the GAC addition could mitigate the microalgal lysis caused by bacteria and thus greatly reduce the bioavailability of EOM from 2.80mgL-1 to 0.61mgL-1, which was beneficial for the improvement of biostability and reuse of effluent after the microalgal harvesting.


Assuntos
Carvão Vegetal , Microalgas , Biomassa , Carbono , Fósforo , Águas Residuárias
6.
Environ Sci Pollut Res Int ; 24(9): 8326-8335, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28161864

RESUMO

To effectively remove N and P from eutrophic water, the Phragmites australis after phytoremediation was harvested for preparation of modified biochar. The MgCl2-modified biochar (MPB) was successfully synthesized at 600 °C under N2 circumstance. The physiochemical characteristics, the adsorption capacity for N and P in the simulated solution, and their adsorption mechanism of MPB were then determined, followed by the treatment of eutrophic water of Tai lake and its inflow river from agricultural source. The results demonstrated that the MPB presented high adsorption capacity to both simulated NH4-N and PO4-P with the maximum adsorption capacity exceeding 30 and 100 mg g-1, respectively. The entire ammonium adsorption process could be described by a pseudo-second-order kinetic model whereas the phosphate adsorption process could be divided into three phases, as described by both intra-particle diffusion model and the pseudo-first-order kinetic. It was further found that the dominant mechanism for ammonium adsorption was Mg2+ exchange instead of functional groups and surface areas and the Mg-P precipitation was the main mechanism for phosphate adsorption. The MPB also showed high removal ratio of practical TP which reached nearly 90% for both the water in Tai lake and its agricultural source. It suggested that MPB based on harvested P. australis was a promising composite for eutrophic water treatment and it could deliver multiple benefits. Graphic abstract.


Assuntos
Compostos de Amônio/isolamento & purificação , Carvão Vegetal/química , Fosfatos/isolamento & purificação , Purificação da Água/métodos , Adsorção , Biodegradação Ambiental , Difusão , Cinética , Cloreto de Magnésio , Poaceae , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA