Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chin Med ; 18(1): 67, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280712

RESUMO

BACKGROUND: Dermatophyte caused by Trichophyton mentagrophytes is a global disease with a growing prevalence that is difficult to cure. Perilla frutescens (L.) Britt. is an edible and medicinal plant. Ancient books of Traditional Chinese Medicine and modern pharmacological studies have shown that it has potential anti-fungi activity. This is the first study to explore the inhibitory effects of compounds from P. frutescens on Trichophyton mentagrophytes and its mechanism of action coupled with the antifungal activity in vitro from network pharmacology, transcriptomics and proteomics. METHODS: Five most potential inhibitory compounds against fungi in P. frutescens was screened with network pharmacology. The antifungal activity of the candidates was detected by a broth microdilution method. Through in vitro antifungal assays screening the compound with efficacy, transcriptomics and proteomics were performed to investigate the pharmacological mechanisms of the effective compound against Trichophyton mentagrophytes. Furthermore, the real-time polymerase chain reaction (PCR) was applied to verify the expression of genes. RESULTS: The top five potential antifungal compounds in P. frutescens screened by network pharmacology are: progesterone, luteolin, apigenin, ursolic acid and rosmarinic acid. In vitro antifungal assays showed that rosmarinic acid had a favorable inhibitory effect on fungi. The transcriptomic findings exhibited that the differentially expressed genes of fungus after rosmarinic acid intervention were mainly enriched in the carbon metabolism pathway, while the proteomic findings suggested that rosmarinic acid could inhibit the average growth of Trichophyton mentagrophytes by interfering with the expression of enolase in the glycolysis pathway. Comparison of real-time PCR and transcriptomics results showed that the trends of gene expression in glycolytic, carbon metabolism and glutathione metabolic pathways were identical. The binding modes and interactions between rosmarinic acid and enolase were preliminary explored by molecular docking analysis. CONCLUSION: The key findings of the present study manifested that rosmarinic acid, a medicinal compound extracted from P. frutescens, had pharmacological activity in inhibiting the growth of Trichophyton mentagrophytes by affecting its enolase expression to reduce metabolism. Rosmarinic acid is expected to be an efficacious product for prevention and treatment of dermatophytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA