Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474905

RESUMO

To address the limitations of LiDAR dynamic target detection methods, which often require heuristic thresholding, indirect computational assistance, supplementary sensor data, or postdetection, we propose an innovative method based on multidimensional features. Using the differences between the positions and geometric structures of point cloud clusters scanned by the same target in adjacent frame point clouds, the motion states of the point cloud clusters are comprehensively evaluated. To enable the automatic precision pairing of point cloud clusters from adjacent frames of the same target, a double registration algorithm is proposed for point cloud cluster centroids. The iterative closest point (ICP) algorithm is employed for approximate interframe pose estimation during coarse registration. The random sample consensus (RANSAC) and four-parameter transformation algorithms are employed to obtain precise interframe pose relations during fine registration. These processes standardize the coordinate systems of adjacent point clouds and facilitate the association of point cloud clusters from the same target. Based on the paired point cloud cluster, a classification feature system is used to construct the XGBoost decision tree. To enhance the XGBoost training efficiency, a Spearman's rank correlation coefficient-bidirectional search for a dimensionality reduction algorithm is proposed to expedite the optimal classification feature subset construction. After preliminary outcomes are generated by XGBoost, a double Boyer-Moore voting-sliding window algorithm is proposed to refine the final LiDAR dynamic target detection accuracy. To validate the efficacy and efficiency of our method in LiDAR dynamic target detection, an experimental platform is established. Real-world data are collected and pertinent experiments are designed. The experimental results illustrate the soundness of our method. The LiDAR dynamic target correct detection rate is 92.41%, the static target error detection rate is 1.43%, and the detection efficiency is 0.0299 s. Our method exhibits notable advantages over open-source comparative methods, achieving highly efficient and precise LiDAR dynamic target detection.

2.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917530

RESUMO

Concerning the triple-frequency ambiguity resolution, in principle there are three different realizations. The first one is to fix all the ambiguities of the original frequencies together. However, it is also believed that fixing the combined integer ambiguities with longer wavelength, such as extra-wide-lane (EWL), wide-lane (WL), should be advantageous. Also, it is demonstrated that fixing sequentially EWL, WL and one type of original ambiguities provides better results, as the previously fixed ambiguities increase parameters' precision for later fixings. In this paper, we undertake a comparative study of the three fixing approaches by means of experimental validation. In order to realize the three fixing approaches from the same information in terms of adjustment, we developed a processing strategy to provide fully consistent normal equations. We first generate the normal equation with the original undifferentiated carrier phase ambiguities, then map it into that with the combined and double-differenced ambiguities required by the individual approach for fixing. Four baselines of 258 m, 22 km, 47 km and 53 km are selected and processed in both static and kinematic mode using the three ambiguity-fixing approaches. Indicators including time of first fixed solution (TFFS), the correct fixing rate, positioning accuracy and RATIO are used to evaluate and investigate results. We also made a preliminary theoretical explanation of the results by looking into the decorrelation procedure of the ambiguity searching algorithm and the intermediate results. As conclusions, integrated searching of original ambiguities or combined ambiguities has almost the same fixing performance, whereas the sequential fixing of EWL, WL and B1 ambiguities overperforms the integrated searching. By the way, the third-frequency data can shorten the TFFS significantly but can hardly improve the positioning.

3.
Sensors (Basel) ; 18(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404244

RESUMO

Recently, the integration of an inertial navigation system (INS) and the Global Positioning System (GPS) with a two-antenna GPS receiver has been suggested to improve the stability and accuracy in harsh environments. As is well known, the statistics of state process noise and measurement noise are critical factors to avoid numerical problems and obtain stable and accurate estimates. In this paper, a modified extended Kalman filter (EKF) is proposed by properly adapting the statistics of state process and observation noises through the innovation-based adaptive estimation (IAE) method. The impact of innovation perturbation produced by measurement outliers is found to account for positive feedback and numerical issues. Measurement noise covariance is updated based on a remodification algorithm according to measurement reliability specifications. An experimental field test was performed to demonstrate the robustness of the proposed state estimation method against dynamic model errors and measurement outliers.

4.
Sensors (Basel) ; 13(4): 4514-26, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23552104

RESUMO

The GNSS derived Zenith Tropospheric Delay (ZTD) plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS) was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS). The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA