Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928514

RESUMO

Macrobrachium rosenbergii is an essential species for freshwater economic aquaculture in China, but in the larval process, their salinity requirement is high, which leads to salinity stress in the water. In order to elucidate the mechanisms regulating the response of M. rosenbergii to acute low-salinity exposure, we conducted a comprehensive study of the response of M. rosenbergii exposed to different salinities' (0‱, 6‱, and 12‱) data for 120 h. The activities of catalase, superoxide dismutase, and glutathione peroxidase were found to be significantly inhibited in the hepatopancreas and muscle following low-salinity exposure, resulting in oxidative damage and immune deficits in M. rosenbergii. Differential gene enrichment in transcriptomics indicated that low-salinity stress induced metabolic differences and immune and inflammatory dysfunction in M. rosenbergii. The differential expressions of MIH, JHEH, and EcR genes indicated the inhibition of growth, development, and molting ability of M. rosenbergii. At the proteomic level, low salinity induced metabolic differences and affected biological and cellular regulation, as well as the immune response. Tyramine, trans-1,2-Cyclohexanediol, sorbitol, acetylcholine chloride, and chloroquine were screened by metabolomics as differential metabolic markers. In addition, combined multi-omics analysis revealed that metabolite chloroquine was highly correlated with low-salt stress.


Assuntos
Larva , Palaemonidae , Estresse Salino , Animais , Palaemonidae/genética , Palaemonidae/metabolismo , Palaemonidae/crescimento & desenvolvimento , Larva/metabolismo , Transcriptoma , Proteômica/métodos , Salinidade , Perfilação da Expressão Gênica , Metabolômica/métodos , Estresse Oxidativo , Multiômica
2.
Bioresour Bioprocess ; 10(1): 48, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38647780

RESUMO

Ursodeoxycholic acid (UDCA) is not only safer than chenodeoxycholic acid in the treatment of hepatobiliary diseases, but also has a wide range of applications in Acute Kidney Injury and Parkinson's Disease. The purpose of this experiment is to improve the conversion rate of 7-ketocholic acid (7K-LCA) and the yield of ursodeoxycholic acid in aprotic solvents during electrochemical reduction process. Three aprotic solvents were investigated as electrolytes. 1,3-Dimethyl-2-imidazolidinone (DMI) has a stable five-membered ring structure, and 7K-LCA has undergone two nucleophilic reactions and "Walden" inversion, the 7K-LCK was stereoselectively reduced to UDCA. Hexamethylphosphoramide (HMPA) and 1,3-methyl-3,4,5,6-Tetrahydro-2(1H)-pyrimidinone (DMPU) can be attacked by chloride ions to produce by-products. Molecular orbital theory-based simulations were conducted to study the reducibility of three aprotic solvents [hexamethylphosphoramide (HMPA), 1,3-methyl-3,4,5,6-Tetrahydro-2(1H)-pyrimidinone (DMPU), and 1,3-Dimethyl-2-imidazolidinone (DMI)] in combination with experiments. Choose the best solvent based on the simulation results, the electrolysis reaction can be carried out by applying current and voltage when lithium chloride is used as electrolytes. Calculations using Materials Studio showed that Cu, Pb, Hg-Cu, and Ni exhibited the highest binding energies to the substrate in this system. Using Cu as the electrode when the solvent is a 1:1 mix of DMI and HMPA, the conversion rate of 7-ketocholic acid (could reach 98%, the yield of ursodeoxycholic acid was up to 80%. Under the same conditions, linear voltammetry was performed on the electrochemical workstation to study the electrolysis behavior, and the obtained results were consistent with the experiment.

3.
J Med Chem ; 62(20): 9299-9314, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31556611

RESUMO

In order to discover novel hypoxia-inducible factor 1 (HIF-1) inhibitors for the cancer metastasis treatment, 68 new aryl carboxamide compounds were synthesized and evaluated for their inhibitory effect by dual luciferase-reporter assay. Based on five rounds of investigation on structure-activity relationships step by step, compound 30m was discovered as the most active inhibitor (IC50 = 0.32 µM) with no obvious cytotoxicity (CC50 > 50 µM). It effectively attenuated hypoxia-induced HIF-1α protein accumulation and reduced transcription of vascular epidermal growth factor in a dose-dependent manner, which was further demonstrated by its inhibitory potency on capillary-like tube formation, angiogenesis of zebrafish as well as cellular migration and invasion. Importantly, compound 30m exhibited antimetastatic potency in breast cancer lung metastasis in the mice model, indicating its promising therapeutic potential for prevention and treatment of tumor metastasis. These results definitely merit attention for further rational design of more efficient HIF-1 inhibitors in the future.


Assuntos
Amidas/química , Antineoplásicos/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Amidas/metabolismo , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Concentração Inibidora 50 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/fisiologia
4.
Mol Immunol ; 93: 223-235, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220745

RESUMO

The peroxiredoxins (Prxs) define a novel and evolutionarily conserved superfamily of peroxidases able to protect cells from oxidative damage by catalyzing the reduction of a wide range of cellular peroxides. Prxs have been identified in prokaryotes as well as in eukaryotes, however, the composition and number of Prxs family members vary in different species. In this study, six Prxs were firstly identified from the mud crab Scylla paramamosain by RT-PCR and RACE methods. Six SpPrxs can be subdivided into three classes: (a) three typical 2-Cys enzymes denominated as Prx1/2, 3, 4, (b) two atypical 2-Cys enzymes known as Prx5-1 and Prx5-2, and (c) a 1-Cys isoform named Prx6. The evolutionarily conserved signatures of peroxiredoxin catalytic center were identified in all six SpPrxs. Phylogenetic analysis revealed that SpPrx3, SpPrx4, SpPrx5s and SpPrx6 were clearly classified into Prx3-6 subclasses, respectively. Although SpPrx1/2 could not be grouped into any known Prx subclasses, SpPrx1/2 clustered together with other arthropods Prx1 or unclassified Prx and could be classified into the typical 2-Cys class. The comparative and evolutionary analysis of the Prx gene family in invertebrates and vertebrates were also conducted for the first time. Tissue-specific expression analysis revealed that these six SpPrxs were expressed in different transcription patterns while the highest expression levels were almost all in the hepatopancreas. Quantitative RT-PCR analysis exhibited that the gene expression profiles of six SpPrxs were distinct when crabs suffered biotic and abiotic stresses including the exposures of Vibrio alginolyticus, poly (I:C), cadmium and hypoosmotic salinity, suggesting that the SpPrxs might play different roles in response to various stresses. The recombinant proteins including the SpPrx1/2, SpPrx4, SpPrx5-1 and SpPrx6 were purified and the peroxidase activity assays indicated that all these proteins can reduce H2O2 in a typical DTT-dependent manner. To our knowledge, this is the first study about the comprehensive characterization of Prx gene family in Scylla paramamosain and even in crustaceans. These results would broaden the current knowledge of the whole Prx family as well as be helpful to understand and clarify the evolutionary pattern of Prx family in invertebrate and vertebrate taxa.


Assuntos
Braquiúros/genética , Família Multigênica , Peroxirredoxinas/genética , RNA Mensageiro/genética , Estresse Fisiológico/genética , Sequência de Aminoácidos , Animais , Braquiúros/microbiologia , Cloreto de Cádmio/farmacologia , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Invertebrados/genética , Especificidade de Órgãos , Peroxirredoxinas/classificação , Peroxirredoxinas/isolamento & purificação , Peroxirredoxinas/metabolismo , Filogenia , Poli I-C/farmacologia , Isoformas de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/isolamento & purificação , Distribuição Aleatória , Proteínas Recombinantes/metabolismo , Salinidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vertebrados/genética , Vibrio alginolyticus
5.
Artigo em Inglês | MEDLINE | ID: mdl-27591837

RESUMO

Although iono-regulatory processes are critical for survival of crustaceans during the molt cycle, the mechanisms involved are still not clear. The Na+/K+/2Cl- cotransporter (NKCC), a SLC12A family protein that transports Na+, K+ and 2Cl- into cells, is essential for cell ionic and osmotic regulation. To better understand the role of NKCC in the molt osmoregulation, we cloned and characterized a NKCC gene from the mud crab, Scylla paramamosain (designated as SpNKCC). The predicted SpNKCC protein is well conserved, and phylogenetic analysis revealed that this protein was clustered with crustacean NKCC. Expression of SpNKCC was detected in all the tissues examined but was highest in the posterior gills. Transmission electron microscopy revealed that posterior gills had a thick type of epithelium for ion regulation while the anterior gills possessed a thin phenotype related to gas exchange. During the molting cycle, hemolymph osmolality and ion concentrations (Na+ and Cl-) increased significantly over the postmolt period, remained stable in the intermolt and premolt stages and then decreased at ecdysis. Meanwhile, the expression of SpNKCC mRNA was significantly elevated (26.7 to 338.8-fold) at the ion re-establishing stages (postmolt) as compared with baseline molt level. This pattern was consistent with the coordinated regulation of Na+/K+-ATPase α-subunit (NKA α), carbonic anhydrase cytoplasmic (CAc) isoform and Na+/H+ exchanger (NHE) genes in the posterior gills. These data suggest that SpNKCC may be important in mediating branchial ion uptake during the molt cycle, especially at the postmolt stages.


Assuntos
Crustáceos/metabolismo , DNA Complementar/genética , Brânquias/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Crustáceos/fisiologia , Muda , Concentração Osmolar , Homologia de Sequência de Aminoácidos , Simportadores de Cloreto de Sódio-Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA