Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11845-11854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648548

RESUMO

Organic molecules have been regarded as ideal candidates for near-infrared (NIR) optoelectronic active materials due to their customizability and ease of large-scale production. However, constrained by the intricate molecular design and severe energy gap law, the realization of optoelectronic devices in the second near-infrared (NIR (II)) region with required narrow band gaps presents more challenges. Herein, we have originally proposed a cocrystal strategy that utilizes intermolecular charge-transfer interaction to drive the redshift of absorption and emission spectra of a series BFXTQ (X = 0, 1, 2, 4) cocrystals, resulting in the spectra located at NIR (II) window and reducing the optical bandgap to ∼0.98 eV. Significantly, these BFXTQ-based optoelectronic devices can exhibit dual-mode optoelectronic characteristics. An investigation of a series of BFXTQ-based photodetectors exhibits detectivity (D*) surpassing 1013 Jones at 375 to 1064 nm with a maximum of 1.76 × 1014 Jones at 1064 nm. Moreover, the radiative transition of CT excitons within the cocrystals triggers NIR emission over 1000 nm with a photoluminescence quantum yield (PLQY) of ∼4.6% as well as optical waveguide behavior with a low optical-loss coefficient of 0.0097 dB/µm at 950 nm. These results promote the advancement of an emerging cocrystal approach in micro/nanoscale NIR multifunctional optoelectronics.

2.
Nat Chem ; 16(2): 201-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036642

RESUMO

Two-dimensional organic lateral heterostructures (2D OLHs) are attractive for the fabrication of functional materials. However, it is difficult to control the nucleation, growth and orientation of two distinct components. Here we report the combination of two methods-liquid-phase growth and vapour-phase growth-to synthesize 2D OLHs from perylene and a perylenecarboxaldehyde derivative, with a lateral size of ~20 µm and a tunable thickness ranging from 20 to 400 nm. The screw dislocation growth behaviour of the 2D crystals shows the spiral arrangement of atoms within the crystal lattice, which avoids volume expansion and contraction of OLH, thereby minimizing lateral connection defects. Selective control of the nucleation and sequential growth of 2D crystals leads to structural inversion of the 2D OLHs by the vapour-phase growth method. The resulting OLHs show good light-transport capabilities and tunable spatial exciton conversion, useful for photonic applications. This synthetic strategy can be extended to other families of organic polycyclic aromatic hydrocarbons, as demonstrated with other pyrene and perylene derivatives.

3.
J Am Chem Soc ; 145(16): 9285-9291, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040147

RESUMO

Organic hierarchical branch micro/nanostructures constituted by single crystals with inherent multichannel characteristics exhibit superior potential in regulating photon transmission for photonic circuits. However, organic branch micro/nanostructures with precise branch positions are extremely difficult to achieve due to the randomness of the nucleation process. Herein, by taking advantage of the dislocation stress field-impurity interaction that solute molecules deposit preferentially along the dislocation line, twinning deformation was introduced into microcrystals to induce oriented nucleation sites, and ultimately organic branch microstructures with controllable branch sites were fabricated. The growth mechanism of these controllable single crystals with an angle of 140° between trunk and branch is attributed to the low lattice mismatching ratio (η) of 4.8%. These as-prepared hierarchical branch single crystals with asymmetrical optical waveguide characteristics have been demonstrated as an optical logic gate with multiple input/out channels, which provides a route to command the nucleation sites and offers potential applications in the organic optoelectronics at the micro/nanoscale.

4.
J Phys Chem Lett ; 14(12): 3047-3056, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36946651

RESUMO

Organic charge transfer (CT) cocrystals open a new door for the exploitation of low-dimensional near-infrared (NIR) emitters by a convenient self-assembly approach. However, research about the fabrication of sheet-like NIR-emitting microstructures that are significant for structural construction and integrated application is limited by the unidirectional molecular packing mode. Herein, via regulation of the biaxial intermolecular CT interaction, single-crystalline microsheets with remarkable NIR emission from 720 to 960 nm were synthesized via the solution self-assembly process of dithieno[3,2-b:2',3'-d]thiophene and 7,7,8,8-tetracyanoquinodimethane. The expected sheet-like structure is conducive to achieving a two-dimensional (2D) optical waveguide with an ultralow optical loss rate of 0.250 dB/µm at 860 nm. More significantly, these as-prepared organic microsheets with tunable thicknesses (h) from 100 to 1100 nm exhibit thickness-dependent NIR optical transportation performance. These findings could pave the way to a new class of low-dimensional NIR emitters for 2D photonics at telecom wavelengths.

5.
Free Radic Biol Med ; 199: 154-165, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828294

RESUMO

High fructose intake is an essential risk factor for kidney injury. However, the specific mechanism underlying high fructose-induced kidney injury remains unclarified. Carbohydrate response element-binding protein (ChREBP) is a key transcriptional activator that regulates fructose metabolism. ChREBP-ß exhibits sustained activity due to the lack of a low glucose inhibitory domain, and is thus described as the active form of ChREBP. In this study, a mouse model with specific overexpression of ChREBP-ß in the renal tubule was established by using the Cre/LoxP method. Quantitative proteomic analysis and experimental verification results suggest that ChREP-ß overexpression leads to ferroptosis of renal tubular epithelial cells and kidney injury. ChREPB-ß promotes the gene transcription of thioredoxin-interacting protein (TXNIP) and thereby increases its expression level. TXNIP is associated with activation of ferroptosis. TXNIP can initiate ferroptosis and eventually contribute to high fructose-induced renal tubular epithelial cell damage. Through down-regulating ChREBP-ß, metformin can inhibit gene transcription of TXNIP, attenuate high fructose-induced ferroptosis in renal tubular epithelial cells, and alleviate kidney injury. In conclusion, ChREBP-ß mediates fructose-induced ferroptosis of renal tubular epithelial cells, and metformin with a ChREBP-ß inhibitory effect may be a potential treatment for ferroptosis of renal tubular epithelial cells.


Assuntos
Ferroptose , Metformina , Camundongos , Animais , Ferroptose/genética , Proteômica , Glucose/metabolismo , Células Epiteliais/metabolismo , Metformina/farmacologia , Túbulos Renais/metabolismo , Frutose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
J Phys Chem B ; 118(48): 13954-62, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25361071

RESUMO

LiF-ThF4 molten salt (MS) is the fuel for advanced MS reactors. Knowledge of the microscopic MS structure and dynamics is required for an understanding of the macroscopic physical and chemical properties of the MS phases. We have performed molecular dynamics simulations on LiF-ThF4 MS at different molar percentages (LiF/ThF4 = 20.0 to 0.5) and temperatures (1100 to 1400 K). Experimental deductions and recent theoretical results on the coordination structures and transport properties of the MS are well reproduced. The density of states of the [ThF8](4-) species and the character of the Th-F bonding are investigated. The interplay between the microscopic structures and the dynamical properties is elucidated. Corresponding to the smaller effective radius of Zr, the activation barrier of the M(4+)-F(-) dissociation and the lifetime of the first coordination shell of M(4+) are both smaller for M = Th than for M = Zr in the respective LiF-MF4 systems. The shorter Zr-F bond is stronger than the longer Th-F bond, while the coordination number of the predominant [ZrF7](3-) species is smaller than that of the dominant [ThF8](4-) species. An approximate formula is proposed for the lifetime of F(-) ions in the first solvation shell of molten MFn (M = Y, Zr, Th) in terms of the radial distribution function.

7.
Inorg Chem ; 52(17): 9867-74, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23957772

RESUMO

The tetraoxo pertechnetate anion (TcO4(-)) is of great interest for nuclear waste management and radiopharmceuticals. To elucidate its electronic structure and to compare with that of its lighter congener MnO4(-), the photoelectron and electronic absorption spectra of MnO4(-) and TcO4(-) are investigated with density functional theory (DFT) and ab initio wave function theory (WFT). The vertical electron detachment energies (VDEs) of MnO4(-) obtained with the CR-EOM-CCSD(T) method are in good agreement with the lowest two experimental VDEs; the differences are less than 0.1 eV, representing a significant improvement over the IP-EOM-CCSD(T) result in the literature. Combining our CCSD(T) and CR-EOM-CCSD(T) results, the first five VDEs of TcO4(-) are estimated between 5 and 10 eV with an estimated accuracy of about ±0.2 eV. The vertical excitation energies are determined by using TD-DFT, CR-EOM-CCSD(T), and RAS-PT2 methods. The excitation energies and the assignments of the spectra are analyzed and partly improved. They are compared with reported SAC-CI results and available experimental data. Both dynamic and nondynamic electron correlations are important in the ground and excited states of MnO4(-) and TcO4(-). Nondynamical correlations are particularly relevant in TcO4(-) for reliable prediction of excitation energies. In TcO4(-) one Rydberg state interlaces but does not mix with the valence excited states, and it disappears in the condensed phase.

8.
Chem Asian J ; 8(10): 2489-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23853153

RESUMO

We report a combined photoelectron spectroscopic and relativistic quantum chemistry study on gaseous UCl5(-) and UCl5. The UCl5(-) anion is produced using electrospray ionization and found to be highly electronically stable with an adiabatic electron binding energy of 4.76±0.03 eV, which also represents the electron affinity of the neutral UCl5 molecule. Theoretical investigations reveal that the ground state of UCl5(-) has an open shell with two unpaired electrons occupying two primarily U 5f(z³) and 5f(xyz) based molecular orbitals. The structures of both UCl5(-) and UCl5 are theoretically optimized and confirmed to have C(4v) symmetry. The computational results are in good agreement with the photoelectron spectra, providing insights into the electronic structures and valence molecular orbitals of UCl5(-) and UCl5. We also performed systematic theoretical studies on all the uranium pentahalide complexes UX5(-) (X=F, Cl, Br, I). Chemical bonding analyses indicate that the U-X interactions in UX5(-) are dominated by ionic bonding, with increasing covalent contributions for the heavier halogen complexes.

9.
Inorg Chem ; 52(11): 6617-26, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23662677

RESUMO

While uranyl halide complexes [UO2(halogen)n](2-n) (n = 1, 2, 4) are ubiquitous, the tricoordinate species have been relatively unknown until very recently. Here photoelectron spectroscopy and relativistic quantum chemistry are used to investigate the bonding and stability of a series of gaseous tricoordinate uranyl complexes, UO2X3(-) (X = F, Cl, Br, I). Isolated UO2X3(-) ions are produced by electrospray ionization and observed to be highly stable with very large adiabatic electron detachment energies: 6.25, 6.64, 6.27, and 5.60 eV for X = F, Cl, Br, and I, respectively. Theoretical calculations reveal that the frontier molecular orbitals are mainly of uranyl U-O bonding character in UO2F3(-), but they are from the ligand valence np lone pairs in the heavier halogen complexes. Extensive bonding analyses are carried out for UO2X3(-) as well as for the doubly charged tetracoordinate complexes (UO2X4(2-)), showing that the U-X bonds are dominated by ionic interactions with weak covalency. The U-X bond strength decreases down the periodic table from F to I. Coulomb barriers and dissociation energies of UO2X4(2-) → UO2X3(-) + X(-) are calculated, revealing that all gaseous dianions are in fact metastable. The dielectric constant of the environment is shown to be the key in controlling the thermodynamic and kinetic stabilities of the tetracoordinate uranyl complexes via modulation of the ligand-ligand Coulomb repulsions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA