Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Tree Physiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976033

RESUMO

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation is frequently happened. However, the differential responses of mangrove plant at transcriptome combined metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina, a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using ICP-MS, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids, and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, finally glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.

2.
Int J Mol Med ; 54(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38874017

RESUMO

In paraquat (PQ)­induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone­2,6­disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ­intoxicated Sprague­Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ­induced ALI and its related mechanisms. A PQ­intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF­α, IL­1ß and IL­6 were assessed using an ELISA. Transwell and Cell Counting Kit­8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial­cadherin, zonula occludens­1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol­3­kinase (PI3K)/protein kinase B (AKT)/endothelial­type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ­induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ­induced ALI.


Assuntos
Lesão Pulmonar Aguda , Permeabilidade Capilar , Pulmão , Óxido Nítrico Sintase Tipo III , Paraquat , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Masculino , Transdução de Sinais/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Paraquat/efeitos adversos , Paraquat/toxicidade , Ratos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
Inflamm Res ; 73(7): 1185-1201, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748233

RESUMO

OBJECTIVE: Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS: 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1ß and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS: At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1ß and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS: Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.


Assuntos
Diabetes Mellitus Experimental , Exenatida , Proteína Adaptadora de Sinalização NOD1 , Infecções por Pseudomonas , Pseudomonas aeruginosa , Ratos Sprague-Dawley , Animais , Exenatida/farmacologia , Exenatida/uso terapêutico , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Masculino , Infecções por Pseudomonas/tratamento farmacológico , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , NF-kappa B/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Linhagem Celular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ratos , Lipopolissacarídeos , Peptídeos/farmacologia , Peptídeos/uso terapêutico
4.
Transl Vis Sci Technol ; 13(5): 24, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809530

RESUMO

Purpose: To evaluate the association between preoperative ocular parameters and myopic shift following primary intraocular lens (IOL) implantation in pediatric cataracts. Methods: Eyes from pediatric patients undergoing bilateral cataract surgery with primary IOL implantation were included. Eyes were grouped by age at surgery and subdivided into three axial length (AL) subgroups and three keratometry subgroups. Mixed-effects linear regression was utilized to assess the trend in myopic shift among subgroups. Multivariable analysis was performed to determine factors associated with myopic shift. Results: A total of 222 eyes were included. The median age at surgery was 4.36 years (interquartile range [IQR], 3.16-6.00 years) and the median follow-up was 4.18 years (IQR, 3.48-4.64 years). As preoperative AL increased, a decreased trend was observed in myopic shift and rate of myopic shift (P = 0.008 and P = 0.003, respectively, in the 4 to <6 years old group; P = 0.002 and P < 0.001, respectively, in the ≥6 years old group). Greater myopic shift and rate of myopic shift were associated with younger age at surgery (P = 0.008 and P = 0.008, respectively). Both myopic shift and rate of myopic shift were negatively associated with AL. Conclusions: Age at surgery and preoperative AL were associated with myopic shift in pediatric cataracts following primary IOL implantation. Adjusting the target refraction based on preoperative AL could potentially improve patients' long-term refractive outcome. Translational Relevance: This study may help to guide the selection of postoperative target refraction according to age at surgery and preoperative ocular parameters for pediatric cataracts.


Assuntos
Implante de Lente Intraocular , Miopia , Humanos , Implante de Lente Intraocular/efeitos adversos , Feminino , Miopia/cirurgia , Miopia/fisiopatologia , Masculino , Pré-Escolar , Criança , Estudos Retrospectivos , Refração Ocular/fisiologia , Comprimento Axial do Olho/patologia , Catarata/complicações , Catarata/fisiopatologia , Extração de Catarata/efeitos adversos , Acuidade Visual/fisiologia , Período Pré-Operatório , Seguimentos
5.
BMC Plant Biol ; 24(1): 480, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816792

RESUMO

Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.


Assuntos
Epimedium , MicroRNAs , Fósforo , Transcriptoma , Fósforo/deficiência , Fósforo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Epimedium/genética , Epimedium/metabolismo , Epimedium/fisiologia , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
6.
Carbohydr Polym ; 335: 122108, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616082

RESUMO

Cellulose nanofiber was an ideal candidate for humidity actuators based on its wide availability, biocompatibility and excellent hydrophilicity. However, conventional cellulose nanofiber-based actuators faced challenges like poor water resistance, flexibility, and sensitivity. Herein, water-resistant, flexible, and highly sensitive cross-linked cellulose nanofibers (CCNF) single-layer humidity actuators with remarkable reversible humidity responsiveness were prepared by combining the green click chemistry modification and intercalation modulated plasticization (IMP). The incorporation of phenyl ring and the crosslinked network structure in CCNF films contributed to its improved water resistance and mechanical properties (with a stress increased from 85.9 ± 3.1 MPa to 141.2 ± 21.5 MPa). SEM analysis confirmed enhanced interlaminar sliding properties facilitated by IMP. This resulted in increased flexibility and toughness of CCNF films, with a strain of 11.5 % and toughness of 9.9 MJ/m3. These improvements efficiently enhanced humidity sensitivity for cellulose nanofiber, with a 4.8-fold increase in bending curvature and a response time of only 3.4 ± 0.1 s. Finally, the good humidity sensitivity of modified CNF can be easily imparted to carbon nanotubes (CNTs) via simple self-assembly method, thus leading to a high-performance humidity-responsive actuator. The click chemistry modification and IMP offer a new avenue to fabricate tough, reversible and highly sensitive humidity actuator based on cellulose nanofiber.

7.
Heliyon ; 10(4): e26168, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390171

RESUMO

Thyroid dysfunction is common in critical illness and may influence prognosis. However, the value of TSH in patients with severe diseases remains unclear. The aim of this study was to investigate the association between TSH and the clinical prognosis of critically ill patients. Methods: This retrospective study identified patients who were admitted to the ICU in the Medical Information Mart for Intensive Care (MIMIC-IV) database (version 2.2). A total of 6432 patients were divided into four groups based on TSH quartiles (Q1, <0.92 mIU/L; Q2, 0.92-1.07 mIU/L; Q3, 1.07-3.10 mIU/L; Q4, >3.10 mIU/L). The clinical outcomes were defined as all-cause 7-, 30-, and 90-year mortality after ICU admission. Restricted cubic splines (RCSs) for nonlinear associations were generated to visualize the relationship between TSH levels and clinical outcomes. The survival differences among the four groups were also analyzed using Kaplan‒Meier curves and log rank tests. Univariable and multivariable Cox proportional hazards regression were further used to assess the association between TSH levels and clinical outcomes. Results: After multivariate adjustment, a U-shaped relationship was observed between TSH levels and all-cause 7-, 30-, and 90- mortality among patients with severe disease (all P < 0.05 for nonlinearity). The plot showed a risk reduction in the low range of TSH, which reached the lowest risk at approximately 2.9 µIU/mL and then increased thereafter. Compared with patients with Q3 TSH levels, those with Q1, Q2, and Q4 TSH levels had a significantly higher risk of all-cause 30-day mortality (Q1: hazard ratio, 1.28; 95% CI, 1.06-1.54; Q2: hazard ratio, 1.22; 95% CI, 1.01-1.48; Q4: hazard ratio, 1.25; 95% CI, 1.04-1.50). For all-cause 90-day mortality, only the Q4 group had a significantly higher mortality risk than the Q3 group (hazard ratio, 1.24; 95% CI, 1.07-1.44). In subgroup analyses, we found that Q1 TSH levels were associated with higher mortality risk in men and older (≥65 years) patients, while Q4 TSH had a greater risk in men and younger (<65 years) patients. Conclusions: TSH was significantly associated with all-cause 7-, 30-, and 90-day mortality in critically ill patients after admission to the ICU. TSH may serve as a valuable biomarker for risk stratification in critically ill patients.

8.
Cost Eff Resour Alloc ; 22(1): 8, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281053

RESUMO

BACKGROUND: Combined serplulimab and chemotherapy demonstrated improved clinical survival outcomes in patients with advanced esophageal squamous cell carcinoma (ESCC) and PD-L1 combined positive scores (CPS) ≥ 1. The present study aimed to evaluate the economic viability of integrating serplulimab in combination with chemotherapy as a potential therapeutic approach for treating ESCC in China. METHODS: A Markov model was constructed to evaluate the economic and health-related implications of combining serplulimab with chemotherapy. With the incremental cost-effectiveness ratio (ICER), costs and results in terms of health were estimated. For assessing parameter uncertainty, one-way and probabilistic sensitivity studies were carried out. RESULTS: The combination of serplulimab and chemotherapy yielded incremental costs and QALYs of $3,163 and 0.14, $2,418 and 0.10, and $3,849 and 0.15, respectively, for the overall population as well as patients with PD-L1 CPS1-10 and PD-L1 CPS ≥ 10. This corresponds to ICER values per QALY of $23,657, $23,982, and $25,134. At the prespecified WTP limit, the probabilities of serplulimab with chemotherapy being the preferred intervention option were 74.4%, 61.3%, and 78.1% for the entire patient population, those with PD-L1 1 ≤ CPS < 10, and those with PD-L1 CPS ≥ 10, respectively. The stability of the presented model was confirmed through sensitivity studies. CONCLUSIONS: In conclusion, the combination of Serplulimab and chemotherapy showed excellent cost-effectiveness compared to chemotherapy alone in treating PD-L1-positive patients with ESCC in China.

9.
Ecotoxicol Environ Saf ; 271: 115966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219620

RESUMO

Aluminum (Al) is a common neurotoxicant in the environment, but the molecular mechanism of its toxic effects is still unclear. Studies have shown that aluminum exposure causes an increase in neuronal apoptosis. The aim of this study was to investigate the mechanism and signaling pathway of neuronal apoptosis induced by aluminum exposure. The rat model was established by intraperitoneal injection of maltol aluminum for 90 days. The results showed that the escape latency of the three groups exposed to maltol aluminum was higher than that of the control group on the 3rd, 4th and 5th days of the positioning cruise experiment (P < 0.05). On the 6th day of the space exploration experiment, compared with the control group(6.00 ± 0.71,15.33 ± 1.08) and the low-dose group(5.08 ± 1.69,13.67 ± 1.09), the number of times that the high-dose group crossed the platform(2.25 ± 0.76) and the platform quadrant(7.58 ± 1.43) was significantly reduced (P < 0.01). The relative expression levels of Sirt1 and Nrf2 in hippocampal tissues of all groups decreased gradually with increasing maltol aluminum exposure dose the relative expression levels of Sirt1 and Nrf2 in high-dose group (0.261 ± 0.094,0.325 ± 0.108) were significantly lower than those in control group (1.018 ± 0.222,1.009 ± 0.156)(P < 0.05). The relative expression level of Keap1 increased gradually with increasing maltol aluminum exposure dose (P < 0.05). The relative expression level of miR-128-3p in the high-dose group(1.520 ± 0.280) was significantly higher than that in the control group(1.000 ± 0.420) (P < 0.05). The content of GSH-Px in the hippocampus of rats decreased with increasing dose. ROS levels gradually increased. We speculated that subchronic aluminum exposure may lead to the activation of miR-128-3p in rat hippocampus of rats, thereby inhibiting the Sirt1-Keap1/Nrf2 pathway so that the Sirt1-Keap1/Nrf2 pathway could not be activated to exert antioxidant capacity, resulting in an imbalance in the antioxidant system of rats and the apoptosis of neurons, which caused reduced cognitive impairment in rats.


Assuntos
Disfunção Cognitiva , MicroRNAs , Ratos , Animais , Antioxidantes/metabolismo , Estresse Oxidativo , Alumínio/toxicidade , Alumínio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/genética , Apoptose
10.
Acta Ophthalmol ; 102(5): e805-e812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38292001

RESUMO

PURPOSE: The purpose of this study was to compare the tilt and decentration of one-piece anti-vaulting haptic intraocular lenses (IOL) and three-piece C-loop haptic IOLs in paediatric eyes undergoing secondary IOL implantation into the ciliary sulcus. METHODS: Paediatric aphakic patients receiving either one-piece anti-vaulting haptic or three-piece C-loop haptic IOL implants into the ciliary sulcus were enrolled in this prospective non-randomized interventional study and followed up for 3 years. IOL decentration and tilt were measured using Scheimpflug images. Preoperative and postoperative information, including demographic data and ocular biometric parameters and complications, were collected and analysed. RESULTS: Among 123 eyes of 79 paediatric patients, there were 72 eyes (58.54%) in the anti-vaulting haptic IOL group and 51 eyes (41.46%) in the C-loop haptic group. The anti-vaulting haptic IOL group had a lower incidence of clinically significant vertical IOL decentration than the C-loop haptic IOL group (23.88% vs. 43.14%, p = 0.037). No intergroup differences were observed in vertical or horizontal tilt or in horizontal decentration (all p > 0.05). One-piece anti-vaulting haptic IOL implantation was associated with a lower risk of clinically significant vertical decentration than three-piece C-loop haptic IOL implantation (odds ratio: 0.42, p = 0.037). There was a higher incidence of IOL dislocation in the C-loop haptic IOL group (15.22% vs. 4.17%, p = 0.046). CONCLUSIONS: In paediatric aphakic eyes undergoing secondary IOL implantation into the ciliary sulcus, one-piece anti-vaulting haptic IOLs can reduce the risk of clinically significant vertical IOL decentration compared with three-piece C-loop haptic IOLs and may favour long-term IOL positional stability.


Assuntos
Corpo Ciliar , Implante de Lente Intraocular , Lentes Intraoculares , Desenho de Prótese , Acuidade Visual , Humanos , Estudos Prospectivos , Masculino , Feminino , Lentes Intraoculares/efeitos adversos , Pré-Escolar , Seguimentos , Corpo Ciliar/cirurgia , Implante de Lente Intraocular/métodos , Criança , Afacia Pós-Catarata/fisiopatologia , Afacia Pós-Catarata/cirurgia , Migração do Implante de Lente Intraocular/diagnóstico , Migração do Implante de Lente Intraocular/etiologia , Migração do Implante de Lente Intraocular/prevenção & controle , Migração do Implante de Lente Intraocular/fisiopatologia , Lactente , Refração Ocular/fisiologia , Complicações Pós-Operatórias/epidemiologia , Fatores de Tempo
11.
J Exp Bot ; 75(8): 2266-2279, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190348

RESUMO

In plants, C-to-U RNA editing mainly occurs in plastid and mitochondrial transcripts, which contributes to a complex transcriptional regulatory network. More evidence reveals that RNA editing plays critical roles in plant growth and development. However, accurate detection of RNA editing sites using transcriptome sequencing data alone is still challenging. In the present study, we develop PlantC2U, which is a convolutional neural network, to predict plastid C-to-U RNA editing based on the genomic sequence. PlantC2U achieves >95% sensitivity and 99% specificity, which outperforms the PREPACT tool, random forests, and support vector machines. PlantC2U not only further checks RNA editing sites from transcriptome data to reduce possible false positives, but also assesses the effect of different mutations on C-to-U RNA editing based on the flanking sequences. Moreover, we found the patterns of tissue-specific RNA editing in the mangrove plant Kandelia obovata, and observed reduced C-to-U RNA editing rates in the cold stress response of K. obovata, suggesting their potential regulatory roles in plant stress adaptation. In addition, we present RNAeditDB, available online at https://jasonxu.shinyapps.io/RNAeditDB/. Together, PlantC2U and RNAeditDB will help researchers explore the RNA editing events in plants and thus will be of broad utility for the plant research community.


Assuntos
Aprendizado Profundo , Edição de RNA , Edição de RNA/genética , Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transcriptoma , RNA de Plantas/genética , RNA de Plantas/metabolismo
12.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984066

RESUMO

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Assuntos
Aquaporinas , Avicennia , Avicennia/metabolismo , Ecossistema , Água/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo
13.
Int J Biol Macromol ; 255: 128099, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979756

RESUMO

Sustainably-sourced functional nanocellulose materials are vitally important for the green and sustainable development. Herein, we reported photocrosslinkable and hydroplasticable TEMPO-oxidized cellulose nanofiber phenyl propylene ketone ethers (TOCNPPK) films with excellent ultraviolet (UV) shielding, highly reversible processability, and extended mechanical properties, which were facilitated by green hydroxyl-yne click reaction. The introduction of conjugated aromatic ring and vinyl bonds (-C=C-) had been demonstrated the key for the improved overall performance of resultant TOCNPPK, which not only endowed the TOCNPPK with nearly 100 % UV shielding, but also enabled it to be formed into diverse 3D shapes (helix, ring and letters "N, F, U") via the facile hydrosetting method. The photocrosslinkable-enhanced mechanical performance of TOCNPPK films was also attributed to -C=C- which could crosslink via [2π + 2π] cycloaddition reactions under UV-irradiation. The ultimate stress of TOCNPPK films was as high as 210.0 ± 22.8 MPa and the Young's modulus was 11.5 ± 0.7 GPa, much superior to those of 128.6 ± 8.5 MPa and 9.2 ± 0.6 GPa for pristine TOCN films. Furthermore, the TOCNPPK had been demonstrated as efficient nanofillers for both hydrophilic polyvinyl alcohol and lipophilic polycaprolactone to develop advanced biodegradable composite films with the integration of good water-wetting resistance, excellent UV blocking, and photo-enhanced mechanical performance.


Assuntos
Celulose Oxidada , Nanofibras , Celulose Oxidada/química , Nanofibras/química , Água
14.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37769324

RESUMO

Salt secretion is an important strategy used by the mangrove plant Aegiceras corniculatum to adapt to the coastal intertidal environment. However, the structural, developmental and functional analyses on the leaf salt glands, particularly the salt secretion mechanism, are not well documented. In this study, we investigated the structural, developmental and degenerative characteristics and the salt secretion mechanisms of salt glands to further elucidate the mechanisms of salt tolerance of A. corniculatum. The results showed that the salt gland cells have a large number of mitochondria and vesicles, and plenty of plasmodesmata as well, while chloroplasts were found in the collecting cells. The salt glands developed early and began to differentiate at the leaf primordium stage. We observed and defined three stages of salt gland degradation for the first time in A. corniculatum, where the secretory cells gradually twisted and wrinkled inward and collapsed downward as the salt gland degeneration increased and the intensity of salt gland autofluorescence gradually diminished. In addition, we found that the salt secretion rate of the salt glands increased when the treated concentration of NaCl increased, reaching the maximum at 400 mM NaCl. The salt-secreting capacity of the salt glands of the adaxial epidermis is significantly greater than that of the abaxial epidermis. The real-time quantitative PCR results indicate that SAD2, TTG1, GL2 and RBR1 may be involved in regulating the development of the salt glands of A. corniculatum. Moreover, Na+/H+ antiporter, H+-ATPase, K+ channel and Cl- channel may play important roles in the salt secretion of salt glands. In sum mary, this study strengthens the understanding of the structural, developmental and degenerative patterns of salt glands and salt secretion mechanisms in mangrove recretohalophyte A. corniculatum, providing an important reference for further studies at the molecular level.


Assuntos
Primulaceae , Glândula de Sal , Meio Ambiente , Folhas de Planta/metabolismo , Primulaceae/fisiologia , Cloreto de Sódio/metabolismo
15.
Int J Mol Med ; 52(4)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654182

RESUMO

Fine particulate matter (PM2.5) is a type of small particle that is <2.5 µm in diameter that may cause airway inflammation. Thus, the present study aimed to explore the effects of PM2.5 on endoplasmic reticulum (ER) stress and airway inflammation in human airway epithelial cells. For this purpose, HBE135­E6E7 airway epithelial cells were cultured and exposed to specific concentrations of PM2.5 for various periods of time, and cell viability was determined using a Cell Counting Kit­8 assay. The results of the present study demonstrated that exposure to PM2.5 increased the mRNA and protein expression levels of interleukin (IL)­6, tumor necrosis factor (TNF)­α and mucin 5AC (MUC5AC). Moreover, the expression levels of ER stress­related proteins, such as glucose­regulated protein 78, CCAAT­enhancer binding protein homologous protein, activating transcription factor 6, protein kinase R­like ER kinase (PERK), phosphorylated (p­)PERK, inositol­requiring enzyme 1α (IRE1α) and p­IRE1α, and nucleotide­binding oligomerization domain 1 (NOD1) expression levels were increased following exposure to PM2.5. Transfection with IRE1α small interfering RNA (siRNA) led to the increased production of IL­6, TNF­α and MUC5AC. Moreover, the expression of NOD1 and the translocation of NF­κB p65 were inhibited following transfection with IRE1α siRNA. In addition, the results of the present study demonstrated that transfection with NOD1 siRNA decreased the production of IL­6, TNF­α and MUC5AC, and decreased the translocation of NF­κB p65. The expression levels of IL­6, TNF­α and MUC5AC were increased in the HBE135­E6E7 cells following treatment with C12­iE­DAP, a NOD1 agonist. Moreover, treatment with C12­iE­DAP led to the activation of NF­κB p65. Collectively, the results of the present study suggest that PM2.5 promotes airway inflammation and mucin production by activating ER stress in HBE135­E6E7 airway epithelial cells, and that the IRE1α/NOD1/NF­κB pathway may be involved in this process.


Assuntos
Mucinas , NF-kappa B , Humanos , Endorribonucleases/genética , Interleucina-6/genética , Fator de Necrose Tumoral alfa/genética , Proteínas Serina-Treonina Quinases/genética , Inflamação , RNA Interferente Pequeno , Proteína Adaptadora de Sinalização NOD1
16.
J Hazard Mater ; 459: 132321, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37597395

RESUMO

Mangrove Avicennia marina has the importantly potential for cadmium (Cd) pollution remediation in coastal wetlands. Unfortunately, the molecular mechanisms and transporter members for Cd uptake by the roots of A. marina are not well documented. In this study, photosynthetic and phenotypic analysis indicated that A. marina is particularly tolerant to Cd. The content and flux analysis indicated that Cd is mainly retained in the roots, with greater Cd influx in fine roots than that in coarse roots, and higher Cd influx in the root meristem zone as well. Using transcriptomic analysis, a total of 5238 differentially expressed genes were identified between the Cd treatment and control group. Moreover, we found that 54 genes were responsible for inorganic ion transport. Among these genes, AmHMA2, AmIRT1, and AmPCR2 were localized in the plasma membrane and AmZIP1 was localized in both plasma membrane and cytoplasm. All above gene encoding transporters showed significant Cd transport activities using function assay in yeast cells. In addition, the overexpression of AmZIP1 or AmPCR2 in Arabidopsis improved the Cd tolerance of transgenic plants. This is particularly significant as it provides insight into the molecular mechanism for Cd uptake by the roots of mangrove plants and a theoretical basis for coastal wetland phytoremediation.


Assuntos
Arabidopsis , Avicennia , Fabaceae , Avicennia/genética , Cádmio/toxicidade , Proteínas de Membrana Transportadoras , Transporte Biológico , Áreas Alagadas
17.
Carbohydr Polym ; 319: 121160, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567704

RESUMO

The ingenious design of sustainable thermoplastic elastomers (STPEs) is of great significance for the goal of the sustainable development. However, the preparation of STPEs with good mechanical performance is still complicated and challenging. Herein, to achieve a simple preparation of STPEs with strong mechanical properties, two biobased monomers (tetrahydrofurfuryl methacrylate (THFMA) and lauryl methacrylate (LMA)) were copolymerized into poly (THFMA-co-LMA) (PTL) and grafted onto TEMPO oxidized cellulose nanofiber (TOCN) via one-pot surface-initiated atom transfer radical polymerization (SI ATRP). The grafting modified TOCN could be self-assembled into nano-enhanced phases in STPEs, which are conducive to the double enhancement of the strength and toughness of the STPEs, and the size of nano-enhanced phases is mainly affected by TOCN fiber length and molecular weight of grafting chains. Especially, with the addition of 7 wt% TOCN, tensile strength, tensile strain, toughness, and glass transition temperature (Tg) of TOCN based STPEs (TOCN@PTL) exhibited 140 %, 36 %, 215 %, and 6.8 °C increase respectively, which confirmed the leading level in the field of bio-based elastomers. In general, this work constitutes a proof for the chemical modification and self-assembly behavior of TOCN by one-pot SI ATRP, and provides an alternative strategy for the preparation of high-performance STPEs.

18.
Plant Cell Rep ; 42(9): 1473-1485, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516984

RESUMO

KEY MESSAGE: This study provided important insights into the genetic architecture of variations in A. thaliana leaf ionome in a cell-type-specific manner. The functional interpretation of traits associated variants by expression quantitative trait loci (eQTL) analysis is usually performed in bulk tissue samples. While the regulation of gene expression is context-dependent, such as cell-type-specific manner. In this study, we estimated cell-type abundances from 728 bulk tissue samples using single-cell RNA-sequencing dataset, and performed cis-eQTL mapping to identify cell-type-interaction eQTL (cis-eQTLs(ci)) in A. thaliana. Also, we performed Genome-wide association studies (GWAS) analyses for 999 accessions to identify the genetic basis of variations in A. thaliana leaf ionome. As a result, a total of 5,664 unique eQTL genes and 15,038 unique cis-eQTLs(ci) were significant. The majority (62.83%) of cis-eQTLs(ci) were cell-type-specific eQTLs. Using colocalization, we uncovered one interested gene AT2G25590 in Phloem cell, encoding a kind of plant Tudor-like protein with possible chromatin-associated functions, which colocalized with the most significant cis-eQTL(ci) of a Mo-related locus (Chr2:10,908,806:A:C; P = 3.27 × 10-27). Furthermore, we prioritized eight target genes associated with AT2G25590, which were previously reported in regulating the concentration of Mo element in A. thaliana. This study revealed the genetic regulation of ionomic variations and provided a foundation for further studies on molecular mechanisms of genetic variants controlling the A. thaliana ionome.


Assuntos
Arabidopsis , Locos de Características Quantitativas , Arabidopsis/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
19.
Front Plant Sci ; 14: 1183481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377796

RESUMO

Herba Epimedii (Epimedium) leaves are rich in prenylated flavonol glycosides (PFGs) with high medicinal value. However, the dynamics and regulatory network of PFG biosynthesis remain largely unclear. Here, we combined metabolite profiling (targeted to PFGs) and a high-temporal-resolution transcriptome to elucidate PFGs' regulatory network in Epimedium pubescens and identified key candidate structural genes and transcription factors (TFs) involved in PFG accumulation. Chemical profile analysis revealed that PFG content was quite different between buds and leaves and displayed a continuous decline with leaf development. The structural genes are the determinant reasons, and they are strictly regulated by TFs under temporal cues. We further constructed seven time-ordered gene co-expression networks (TO-GCNs) of PFG biosynthesis genes (including EpPAL2, EpC4H, EpCHS2, EpCHI2, EpF3H, EpFLS3, and EpPT8), and three flavonol biosynthesis routines were then predicted. The TFs involved in TO-GCNs were further confirmed by WGCNA analysis. Fourteen hub genes, comprising 5 MYBs, 1 bHLH, 1 WD40, 2 bZIPs, 1 BES1, 1 C2H2, 1 Trihelix, 1 HD-ZIP, and 1 GATA were identified as candidate key TFs. The results were further validated by TF binding site (TFBS) analysis and qRT-PCR. Overall, these findings provide valuable information for understanding the molecular regulatory mechanism of PFGs biosynthesis, enriching the gene resources, which will guide further research on PFG accumulation in Epimedium.

20.
Int J Biol Macromol ; 245: 125415, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327926

RESUMO

Due to the existence of water, it is still a challenge to conduct chemical modification on cellulose nanofiber (CNF) hydrogels with active double bonds. A simple one-pot and one-step method for constructing "living" CNF hydrogel with double bond was created at room temperature. The chemical vapor deposition (CVD) of methacryloyl chloride (MACl) was used to introduce physical-trapped, chemical-anchored and functional double bonds into TEMPO-oxidized cellulose nanofiber (TOCN) hydrogels. TOCN hydrogel could be fabricated within just 0.5 h, the minimum dosage of MACl could be reduced to 3.22 mg/g (MACl/TOCN hydrogel). Furthermore, the CVD methods showed high efficiency for mass production and recyclability. Moreover, the chemical "living" reactivity of the introduced double bonds were verified by the freezing and UV crosslinking, radical polymerization and thiol-ene click reaction. Compared with pure TOCN hydrogel, the obtained functionalized TOCN hydrogel exhibited remarkable improvements in mechanical properties, with enhancements of 12.34 times and 2.04 times, as well as an increase in hydrophobicity by 2.14 times and a fluorescence performance improvement of 2.93 times.


Assuntos
Celulose Oxidada , Nanofibras , Celulose/química , Nanofibras/química , Hidrogéis/química , Óxidos N-Cíclicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose Oxidada/química , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA