Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 292: 121907, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436305

RESUMO

The ongoing SARS-CoV-2 pandemic represents a brutal reminder of the continual threat of mucosal infectious diseases. Mucosal immunity may provide robust protection at the predominant sites of SARS-CoV-2 infection. However, it remains unclear whether respiratory mucosal administration of DNA vaccines could confer protective immune responses against SARS-CoV-2 challenge due to insurmountable barriers posed by the airway. Here, we applied self-assembled peptide-poloxamine nanoparticles with mucus-penetrating properties for pulmonary inoculation of a COVID-19 DNA vaccine (pSpike/PP-sNp). The pSpike/PP-sNp not only displays superior gene transfection and favorable biocompatibility in the mouse airway, but also promotes a tripartite immunity consisting of systemic, cellular, and mucosal immune responses that are characterized by mucosal IgA secretion, high levels of neutralizing antibodies, and resident memory phenotype T-cell responses in the lungs of mice. Most importantly, immunization with pSpike/PP-sNp completely eliminates SARS-CoV-2 infection in both upper and lower respiratory tracts and enables 100% survival rate of mice following lethal SARS-CoV-2 challenge. Our findings indicate PP-sNp is a promising platform in mediating DNA vaccines to elicit all-around mucosal immunity against SARS-CoV-2.


Assuntos
COVID-19 , Nanopartículas , Vacinas de DNA , Camundongos , Animais , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinação , Peptídeos , DNA , Anticorpos Neutralizantes
2.
Theriogenology ; 191: 153-167, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988507

RESUMO

DNA cytosine methylation modification in the germline is of particular importance since it is a highly heritable epigenetic mark. Although cytosine methylation has been analyzed at the genome-scale for several mammalian species, our knowledge of DNA methylation patterns and the mechanisms underlying male hybrid sterility is still limited in domestic animals such as cattleyak. Here we for the first time show the genome-wide and single-base resolution landscape of methylcytosines (mC) in the primary spermatocyte (PSC) genome of yak with normal spermatogenesis and the inter-specific hybrid cattleyak with male infertility. A comparative investigation revealed that widespread differences are observed in the composition and patterning of DNA cytosine methylation between the two methylomes. Global CG or non-CG DNA methylation levels, as well as the number of mC sites, are increased in cattleyak compared to yak. Notably, the DNA methylome in cattleyak PSC exhibits promoter hypermethylation of meiosis-specific genes and piRNA pathway genes with respect to yak. Furthermore, major retrotransposonson classes are predominantly hypermethylated in cattleyak while those are fully hypomethylated in yak. KEGG pathway enrichment indicates Rap1 signaling and MAPK pathways may play potential roles in the spermatogenic arrest of cattleyak. Our present study not only provides valuable insights into distinct features of the cattleyak PSC methylome but also paves the way toward elucidating the complex, yet highly coordinated epigenetic modification during male germline development for inter-specific hybrid animals.


Assuntos
Epigenoma , Infertilidade Masculina , Animais , Citosina , DNA/metabolismo , Metilação de DNA , Epigênese Genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/veterinária , Masculino , Mamíferos , Espermatócitos/metabolismo
3.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35055244

RESUMO

Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.

4.
Funct Integr Genomics ; 21(5-6): 665-678, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34626308

RESUMO

Cattleyaks are the crossbred offspring between cattle and yaks, exhibiting the prominent adaptability to the harsh environment as yaks and much higher growth performances than yaks around Qinghai-Tibet plateau. Unfortunately, cattleyak cannot be effectively used in yak breeding due to its male infertility resulted from spermatogenic arrest. In this study, we performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine the expression profiles of long noncoding RNA (lncRNA) from cattleyak and yak testis. A total of 604 differentially expressed (DE) lncRNAs (135 upregulated and 469 downregulated) were identified in cattleyak with respect to yak. Through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we identified several DE lncRNAs regulating the mitotic cell cycle processes by targeting the genes significantly associated with the mitotic cell cycle checkpoint and DNA damage checkpoint term and also significantly involved in p53 signaling pathway, mismatch repair and homologous recombination pathway (P < 0.05). The reverse transcription PCR (RT-PCR) and quantitative Real-Time PCR (qRT-PCR) analysis of the randomly selected fourteen DE lncRNAs and the seven target genes validated the RNA-seq data and their true expressions during spermatogenesis in vivo. Molecular cloning and sequencing indicated that the testis lncRNAs NONBTAT012170 and NONBTAT010258 presented higher similarity among different cattleyak and yak individuals. The downregulation of these target genes in cattleyak contributed to the abnormal DNA replication and spermatogenic arrest during the S phase of mitotic cell cycle. This study provided a novel insight into lncRNA expression profile changes associated with spermatogenic arrest of cattleyak.


Assuntos
Azoospermia/congênito , Bovinos/genética , RNA Longo não Codificante/genética , Testículo/metabolismo , Transcriptoma , Animais , Azoospermia/genética , Azoospermia/veterinária , Perfilação da Expressão Gênica , Masculino
5.
Pharmaceutics ; 13(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34452241

RESUMO

In vitro-transcribed (IVT) mRNA has come into focus in recent years as a potential therapeutic approach for the treatment of genetic diseases. The nebulized formulations of IVT-mRNA-encoding alpha-1-antitrypsin (A1AT-mRNA) would be a highly acceptable and tolerable remedy for the protein replacement therapy for alpha-1-antitrypsin deficiency in the future. Here we show that lipoplexes containing A1AT-mRNA prepared in optimum conditions could successfully transfect human bronchial epithelial cells without significant toxicity. A reduction in transfection efficiency was observed for aerosolized lipoplexes that can be partially overcome by increasing the initial number of components. A1AT produced from cells transfected by nebulized A1AT-mRNA lipoplexes is functional and could successfully inhibit the enzyme activity of trypsin as well as elastase. Our data indicate that aerosolization of A1AT-mRNA therapy constitutes a potentially powerful means to transfect airway epithelial cells with the purpose of producing functional A1AT, while bringing along the unique advantages of IVT-mRNA.

6.
Reprod Domest Anim ; 56(4): 555-576, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33438262

RESUMO

The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.


Assuntos
Bovinos/fisiologia , Epididimo/metabolismo , MicroRNAs/metabolismo , Maturação do Esperma/fisiologia , Animais , Epididimo/anatomia & histologia , Hibridização Genética/genética , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Masculino , MicroRNAs/genética , RNA-Seq/veterinária , Maturação do Esperma/genética
7.
PLoS One ; 15(2): e0229503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092127

RESUMO

BACKGROUND: Cattleyak are the hybrid offspring between cattle and yak and combine yak hardiness with cattle productivity. Much attempt has been made to examine the mechanisms of male sterility caused by spermatogenic arrest, but yet there is no research systematically and precisely elucidated testis gene expression profiling between cattleyak and yak. METHODS: To explore the higher resolution comparative transcriptome map between the testes of yak and cattleyak, and further analyze the mRNA expression dynamics of spermatogenic arrest in cattleyak. We characterized the comparative transcriptome profile from the testes of yak and cattleyak using high-throughput sequencing. Then we used quantitative analysis to validate several differentially expressed genes (DEGs) in testicular tissue and spermatogenic cells. RESULTS: Testis transcriptome profiling identified 6477 DEGs (2919 upregulated and 3558 downregulated) between cattleyak and yak. Further analysis revealed that the marker genes and apoptosis regulatory genes for undifferentiated spermatogonia were upregulated, while the genes for differentiation maintenance were downregulated in cattleyak. A majority of DEGs associated with mitotic checkpoint, and cell cycle progression were downregulated in cattleyak during spermatogonial mitosis. Furthermore, almost all DEGs related to synaptonemal complex assembly, and meiotic progression presented no sign of expression in cattleyak. Even worse, dozens of genes involved in acrosome formation, and flagellar development were dominantly downregulated in cattleyak. CONCLUSION: DEGs indicated that spermatogenic arrest of cattleyak may originate from the differentiation stage of spermatogonial stem cells and be aggravated during spermatogonial mitosis and spermatocyte meiosis, which contributes to the scarcely presented sperms in cattleyak.


Assuntos
Azoospermia/congênito , Quimera/genética , Infertilidade Masculina/genética , Animais , Azoospermia/genética , Bovinos/genética , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Masculino , Meiose/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Transcriptoma/genética
8.
Int J Biol Sci ; 16(2): 239-250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929752

RESUMO

The male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted the effective utilization of the heterosis from crossbreeding of cattle and yak. Based on our previous studies, the significant divergences of the transcriptomic and proteomic sequencing between yak and cattleyak prompt us to investigate the critical roles of microRNAs in post-transcriptional regulation of gene expression during spermatogenesis. TUNEL-POD analysis presented sharply decreased spermatogenic cell types and the increased apoptotic spermatogonia in cattleyak. The STA-PUT velocity sedimentation was employed to obtain spermatogonia and spermatocytes from cattle, yak and cattleyak and these spermatogenic cells were verified by the morphological and phenotypic identification. MicroRNA microarray showed that 27 differentially expressed miRNAs were simultaneously identified both in cattleyak vs cattle and in cattleyak vs yak comparisons. Further analysis revealed that the down-regulation of bta-let-7 families, bta-miR-125 and bta-miR-23a might impair the RA-induced differentiation of spermatogonia. Target gene analysis for differentially expressed miRNAs revealed that miRNAs targeted major players involved in vesicle-mediated transport, regulation of protein kinase activity and Pathways in cancer. In addition, spermatogonia transfection analysis revealed that the down-regulation of bta-miR-449a in the cattleyak might block the transition of male germ cells from the mitotic cycle to the meiotic program. The present study provided valuable information for future elucidating the regulatory roles of miRNAs involved in spermatogenic arrest of cattleyak.


Assuntos
MicroRNAs/metabolismo , Espermatócitos/citologia , Espermatócitos/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Animais , Bovinos , Células Cultivadas , Masculino , Espermatogênese/genética , Espermatogênese/fisiologia
9.
Theriogenology ; 139: 132-146, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31404823

RESUMO

Immature spermatozoa undergo series of events in the epididymis to acquire motility and fertilizing ability. These events are a direct result of exposure to, and interaction with, the luminal environment created by the epididymal epithelium. The three conventional regions of the epididymis namely; caput, corpus and cauda have been identified to play specific roles in the epididymal maturation process of the spermatozoa; their respective roles have been associated with specific gene expression patterns that account for the composition of the luminal fluid that bathe the spermatozoa as they transit through the epididymal lumen and ensure their maturation. The identification of genes expressed in a region-specific manner provides valuable insight into the functional differences among the regions. Microarray technology has previously been employed in region-specific gene expression studies using the epididymis as a model in different species such as mouse, rat, boar and human. However, to characterize gene expression in the different regions of the epididymis, RNA-seq analysis was used in our study to examine gene expressions in the caput, corpus, and cauda of yak epididymis. Comparative transcriptomic analysis was performed between region pairs in the order; caput vs corpus, caput vs cauda and corpus vs cauda. DEGs among the various region pairs were detected and functional analysis were performed for the detected DEGs. Overall, the caput vs cauda epididymidis pair produced the highest number of DEGs (49.4%) while the corpus vs cauda pair produced the least number of DEGs (19.3%). The caput segment demonstrated relatively high expression of Sal1, LCN6, PTDS, DEFB109, DEFB 119, DEFB 123, SPAG11, PROC, CST3, ADAM28, KCNJ12 and SLC13A2; corpus epididymis demonstrated relatively high expression of MAN2B2, ELP, ZFYVE21, GLB1L, BMP4, DEFB125, PPP1R10, RIOX2, TKDP1, DEFB106A, NPBWR1 and SLC28A1; and the cauda epididymis, demonstrated relatively high expressions of MCT7, PAG4, OAS1, TGM3 and PRSS45. Gene Ontology results showed that DEGs in the caput vs corpus and corpus vs cauda pairs were mostly enriched in the cell/cell part GO term. On the other hand, DEGs in the caput vs cauda pair was were mostly enriched in the cellular process term. KEGG pathway annotation was also performed for DEGs among the various groups. AMPK signaling pathway, which is characterized by the ratio between cellular AMP and ATP and also determines cellular energy state, was selected from among the top five KEGG pathways for DEGs in the caput vs corpus pair. Our results showed that some down-regulated DEGs in the caput and corpus pair such as HN4a, eEF2K and CFTR were present and played significant roles in the AMPK signaling pathway. In the corpus vs cauda pair, our results showed that up-regulated DEGs such as XDH, TRMP2 and ENTPD were involved in the purine metabolism KEGG pathway, which was among top five KEGG pathways for DEGs in this pair. Pentose phosphate pathway functions in antioxidation to protect both the spermatozoa and epididymis from oxidative damage; it was among top five KEGG pathways for DEGs in the caput vs cauda pair. Our results also showed that down-regulated genes in the caput vs cauda pair such as TALDO1 was found to be involved in the Pentose phosphate pathway. The significance of the upregulated and downregulated genes on the pathways were elucidated. SAL1, which showed high expression in the caput, had previously not been demonstrated in the epididymis, needs further investigation to establish its unique role in the yak epididymis.


Assuntos
Bovinos/genética , Epididimo/metabolismo , Animais , Bovinos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Masculino , Reprodução/genética , Motilidade dos Espermatozoides , Espermatozoides/crescimento & desenvolvimento , Transcriptoma
10.
Curr Genomics ; 20(4): 293-305, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32030088

RESUMO

BACKGROUND: Cattleyak are the Fl hybrids between (♀) yak (Bos grunniens) and (♂) cattle (Bos taurus). Cattleyak exhibit higher capability in adaptability to a harsh environment and display much higher performances in production than the yak and cattle. The cattleyak, however, are females fertile but males sterile. All previous studies greatly focused on testes tissues to study the mechanism of male infer-tility in cattleyak. However, so far, no transcriptomic study has been conducted on the epididymides of yak and cattleyak. OBJECTIVE: Our objective was to perform comparative transcriptome analysis between the epididymides of yak and cattleyak and predict the etiology of male infertility in cattleyak.Methods: We performed comparative transcriptome profiles analysis by mRNA sequencing in the epidi-dymides of yak and cattleyak. RESULTS: In total 3008 differentially expressed genes (DEGs) were identified in cattleyak, out of which 1645 DEGs were up-regulated and 1363 DEGs were down-regulated. Thirteen DEGs were validated by quantitative real-time PCR. DEGs included certain genes that were associated with spermatozoal matura-tion, motility, male fertility, water and ion channels, and beta-defensins. LCN9, SPINT4, CES5A, CD52, CST11, SERPINA1, CTSK, FABP4, CCR5, GRIA2, ENTPD3, LOC523530 and DEFB129, DEFB128, DEFB127, DEFB126, DEFB124, DEFB122A, DEFB122, DEFB119 were all downregu-lated, whereas NRIP1 and TMEM212 among top 30 DEGs were upregulated. Furthermore, protein processing in endoplasmic reticulum pathway was ranked at top-listed three significantly enriched KEGG pathways that as a consequence of abnormal expression of ER-associated genes in the entire ER protein processing pathway might have been disrupted in male cattleyak which resulted in the down-regulation of several important genes. All the DEGs enriched in this pathway were downregulated ex-cept NEF. CONCLUSION: Taken together, our findings revealed that there were marked differences in the epididymal transcriptomic profiles of yak and cattleyak. The DEGs were involved in spermatozoal maturation, mo-tility, male fertility, water and ion channels, and beta-defensins. Abnormal expression of ER-associated genes in the entire ER protein processing pathway may have disrupted protein processing pathway in male cattleyak resulting in the downregulation of several important genes involved in sperm maturation, motility and defense.

11.
Anim Reprod Sci ; 193: 182-190, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29685708

RESUMO

Cattleyak forms the first generation in the cross-breeding of cattle (Bos taurus) and yak (Bos grunniens), the purpose of which is to increase the yak's performance in meat and milk production. The female cattleyak is fertile while the male remains sterile due to spermatogenic arrest. The spermatogenic cells (including spermatogonia and spermatocytes) of cattle, yak and cattleyak have not been successfully isolated so far. In this work, spermatogenic cells were isolated from these bovid species with the STA-PUT method that has been previously used for germ cell sorting in human and mouse, and the isolated cells could be used to investigate the mechanisms involved in male sterility observed in cattleyak. The characteristics and size of the isolated cells were investigated through microscopic examination, and the cell types were identified by RT-PCR amplification of the marker genes. The purity of spermatogonia and spermatocytes isolated from each bovid species was found to be higher than 85%. The spermatogonium diameter of cattle (10.10 ±â€¯1.04 µm) and yak (14.90 ±â€¯2.30 µm) were significantly larger (P < 0.01) than that of cattleyak (8.60 ±â€¯0.92 µm). The spermatocyte diameter of cattle (19.40 ±â€¯1.50 µm) and yak (20.50 ±â€¯2.42 µm) were also significantly larger (P < 0.01) than that of cattleyak (17.70 ±â€¯2.05 µm). Therefore, the STA-PUT was again validated to be a convenient, economical and efficient method for isolation of spermatogenic cells as it yields more cells within a short time frame.


Assuntos
Bovinos , Análise do Sêmen , Recuperação Espermática , Espermatócitos/citologia , Espermatogônias/citologia , Animais , Bovinos/classificação , Separação Celular/métodos , Separação Celular/veterinária , Masculino , Análise do Sêmen/veterinária , Recuperação Espermática/veterinária , Espermatogênese/fisiologia
12.
Sci Rep ; 8(1): 592, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330490

RESUMO

Cattleyak are interspecific hybrids between cattle and yak, exhibiting the same prominent adaptability as yak and much higher performances than yak. However, male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted their effective utilization in yak breeding. In past decades, much work has been done to investigate the mechanisms of spermatogenic arrest, but little is known about the differences of the post-transcriptional regulators between cattleyak and yak, which may contribute to the impaired spermatogenesis. MiRNAs, a class of endogenous non-coding small RNA, were revealed to play crucial roles in regulating gene expression at post-transcriptional level. In the present study, we identified 50 differentially expressed (DE) known miRNAs and 11 novel miRNAs by using Illumina HISeq and bioinformatic analysis. A total of 50 putative target sites for the 13 DE known miRNAs and 30 for the 6 DE novel miRNAs were identified, respectively. GO and KEGG analyses were performed to reveal the functions of target genes for DE miRNAs. In addition, RT-qPCR was performed to validate the expression of the DE miRNAs and its targets. The identification of these miRNAs may provide valuable information for a better understanding of spermatogenic arrest in cattleyak.


Assuntos
Azoospermia/congênito , Doenças dos Bovinos/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Testículo/química , Animais , Azoospermia/genética , Azoospermia/veterinária , Bovinos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Humanos , Masculino , Análise de Sequência de RNA/métodos
13.
Theriogenology ; 88: 28-42, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27865410

RESUMO

Cattleyak exhibit equivalent adaptability to harsh environment as yak and much higher performances than yak. However, male infertility of cattleyak due to spermatogenic arrest greatly restricts their effective utilization in yak breeding. Although much work has been done to investigate the mechanisms of spermatogenic arrest, there is little information available in regard to the differences in transcriptomic profiling between cattleyak and yak testes. In this work, histologic observation indicated that spermatogonia were the main type of germ cells present in cattleyak testis, whereas all types of germ cells in differentiation were present in yak testis. Transcriptomic profiling identified 2960 differentially expressed genes (DEGs) in which 679 were upregulated and 2281 were downregulated in cattleyak. Significantly enriched gene ontology terms comprised a large number of DEGs associated with male infertility of cattleyak. The upregulation of STRA8 and NLRP14 may be associated with the accumulation of undifferentiated spermatogonial cells and serious cellular apoptosis in cattleyak. However, downregulated SPP1, SPIN2B, and PIWIL1 were associated with cell cycle progression and spermatogonial genome integrity, whereas CDKN2C, CYP26A1, OVOL1, GGN, MAK, INSL6, RNF212, TSSK1B, TSSK2, and TSSK6 were involved in meiosis. Furthermore, scores of genes associated with sperm components were also downregulated in cattleyak. Wnt/ß-catenin signaling pathway was involved in the top-listed three significantly enriched pathways, and the downregulation of Wnt3a, PP2A, and TCF/LEF-1 may have contributed to the arrest of spermatogonial differentiation in cattleyak. The data suggest that spermatogenic arrest of cattleyak might occur at the stage of spermatogonial differentiation and get aggravated during meiosis, which results in minimal number of sperms with morphologic abnormalities and structural deficiency lacking fertilization ability.


Assuntos
Doenças dos Bovinos/metabolismo , Infertilidade Masculina/veterinária , Testículo/metabolismo , Transcriptoma/fisiologia , Animais , Bovinos , Cruzamentos Genéticos , Biblioteca Gênica , Infertilidade Masculina/metabolismo , Masculino , RNA/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA