Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Anim Sci Biotechnol ; 14(1): 143, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957747

RESUMO

BACKGROUND: The establishment of a robust gut microbiota in piglets during their early developmental stage holds the potential for long-term advantageous effects. However, the optimal timeframe for introducing probiotics to achieve this outcome remains uncertain. RESULTS: In the context of this investigation, we conducted a longitudinal assessment of the fecal microbiota of 63 piglets at three distinct pre-weaning time points. Simultaneously, we gathered vaginal and fecal samples from 23 sows. Employing 16S rRNA gene and metagenomic sequencing methodologies, we conducted a comprehensive analysis of the fluctuation patterns in microbial composition, functional capacity, interaction networks, and colonization resistance within the gut microbiota of piglets. As the piglets progressed in age, discernible modifications in intestinal microbial diversity, composition, and function were observed. A source-tracking analysis unveiled the pivotal role of fecal and vaginal microbiota derived from sows in populating the gut microbiota of neonatal piglets. By D21, the microbial interaction network displayed a more concise and efficient configuration, accompanied by enhanced colonization resistance relative to the other two time points. Moreover, we identified three strains of Ruminococcus sp. at D10 as potential candidates for improving piglets' weight gain during the weaning phase. CONCLUSIONS: The findings of this study propose that D10 represents the most opportune juncture for the introduction of external probiotic interventions during the early stages of piglet development. This investigation augments our comprehension of the microbiota dynamics in early-life of piglets and offers valuable insights for guiding forthcoming probiotic interventions.

2.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889833

RESUMO

The number of teats is a crucial reproductive trait with significant economic implications on maternal capacity and litter size. Consequently, improving this trait is essential to facilitate genetic selection for increased litter size. In this study, we performed a genome-wide association study (GWAS) of the number of teats in a three-way crossbred commercial Duroc × (Landrace × Yorkshire) (DLY) pig population comprising 1518 animals genotyped with the 50K BeadChip. Our analysis identified crucial quantitative trait loci (QTL) for the number of teats, containing the ABCD4 and VRTN genes on porcine chromosome 7. Our results establish SNP variants of ABCD4 and VRTN as new molecular markers for improving the number of teats in DLY pigs. Furthermore, the most significant noteworthy single nucleotide polymorphism (SNP) (7_97568284) was identified within the ABCD4 gene, exhibiting a significant association with the total teat number traits. This SNP accounted for a substantial proportion of the genetic variance, explaining 6.64% of the observed variation. These findings reveal a novel gene on SSC7 for the number of teats and provide a deeper understanding of the genetic mechanisms underlying reproductive traits.

3.
Animals (Basel) ; 13(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893967

RESUMO

During the process of pork production, the carcasses of pigs are divided and sold, which provides better economic benefits and market competitiveness for pork production than selling the carcass as a whole. Due to the significant cost of post-slaughter phenotypic measurement, the genetic architecture of tenderloin weight (TLNW) and rib weight (RIBW)-important components of pig carcass economic value-remain unknown. In this study, we conducted genome-wide association studies (GWAS) for TLNW and RIBW traits in a population of 431 Duroc × Landrace × Yorkshire (DLY) pigs. In our study, the most significant single nucleotide polymorphism (SNP) associated with TLNW was identified as ASGA0085853 (3.28 Mb) on Sus scrofa chromosome 12 (SSC12), while for RIBW, it was Affx-1115046258 (172.45 Mb) on SSC13. Through haplotype block analysis, we discovered a novel quantitative trait locus (QTL) associated with TLNW, spanning a 5 kb region on SSC12, and a novel RIBW-associated QTL spanning 1.42 Mb on SSC13. Furthermore, we hypothesized that three candidate genes, TIMP2 and EML1, and SMN1, are associated with TLNW and RIBW, respectively. Our research not only addresses the knowledge gap regarding TLNW, but also serves as a valuable reference for studying RIBW. The identified SNP loci strongly associated with TLNW and RIBW may prove useful for marker-assisted selection in pig breeding programs.

4.
Animals (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570223

RESUMO

Body conformation is the most direct production index, which can fully reflect pig growth status and is closely related to critical economic traits. In this study, we conducted a genome-wide association study (GWAS) on body conformation traits in a population of 1518 Duroc × (Landrace × Yorkshire) commercial pigs. These traits included body length (BL), body height (BH), chest circumference (CC), abdominal circumference (AC), and waist circumference (WC). Both the mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) approaches were employed for the analysis. Our findings revealed 60 significant single nucleotide polymorphisms (SNPs) associated with these body conformation traits in the crossbred pig population. Specifically, sixteen SNPs were significantly associated with BL, three SNPs with BH, thirteen SNPs with CC, twelve SNPs with AC, and sixteen SNPs with WC. Moreover, we identified several promising candidate genes located within the genomic regions associated with body conformation traits. These candidate genes include INTS10, KIRREL3, SOX21, BMP2, MAP4K3, SOD3, FAM160B1, ATL2, SPRED2, SEC16B, and RASAL2. Furthermore, our analysis revealed a novel significant quantitative trait locus (QTL) on SSC7 specifically associated with waist circumference, spanning an 84 kb interval. Overall, the identification of these significant SNPs and potential candidate genes in crossbred commercial pigs enhances our understanding of the genetic basis underlying body conformation traits. Additionally, these findings provide valuable genetic resources for pig breeding programs.

5.
J Anim Sci Biotechnol ; 14(1): 67, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161604

RESUMO

BACKGROUND: Pork quality can directly affect customer purchase tendency and meat quality traits have become valuable in modern pork production. However, genetic improvement has been slow due to high phenotyping costs. In this study, whole genome sequence (WGS) data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction (GBLUP) for meat quality in large-scale crossbred commercial pigs. RESULTS: We produced WGS data (18,695,907 SNPs and 2,106,902 INDELs exceed quality control) from 1,469 sequenced Duroc × (Landrace × Yorkshire) pigs and developed a reference panel for meat quality including meat color score, marbling score, L* (lightness), a* (redness), and b* (yellowness) of genomic prediction. The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population. Using different marker density panels derived from WGS data, accuracy differed substantially among meat quality traits, varied from 0.08 to 0.47. Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39% to 75%. We optimized the marker density and found medium- and high-density marker panels are beneficial for the estimation of heritability for meat quality. Moreover, we conducted genotype imputation from 50K chip to WGS level in the same population and found average concordance rate to exceed 95% and r2 = 0.81. CONCLUSIONS: Overall, estimation of heritability for meat quality traits can benefit from the use of WGS data. This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction.

6.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37098184

RESUMO

In the pork industry chain, carcass cutting is crucial for enhancing the commercial value of pork carcasses. However, the genetic mechanisms underlying carcass component weights remain poorly understood. Here, we used a combined genome-wide association study (GWAS) approach that integrated single- and multi-locus models to map genetic markers and genes associated with the weights of seven carcass components in Duroc × Landrace × Yorkshire (DLY) pigs. As multi-locus GWAS captures more single nucleotide polymorphisms (SNPs) with large effects than single-locus GWAS, the combined GWAS approach detected more SNPs than using the single-locus model alone. We identified 177 nonredundant SNPs associated with these traits in 526 DLY pigs, including boneless butt shoulder (BBS), boneless picnic shoulder (BPS), boneless leg (BL), belly (BELLY), front fat (FF), rear fat (RF), and skin-on whole loin (SLOIN). Using single-locus GWAS, we identified a quantitative trait locus (QTL) for SLOIN on Sus scrofa chromosome 15 (SSC15). Notably, a single SNP (ASGA0069883) in the proximity of this QTL was consistently detected by all GWAS models (one single-locus and four multi-locus models) and explained more than 4% of the phenotypic variance. Our findings suggest that the involved gene, MYO3B, is proposed to be a strong candidate for SLOIN. Further analysis also identified several candidate genes related to BBS (PPP3CA and CPEB4), BPS (ECH1), FF (CACNB2 and ZNF217), BELLY (FGFRL1), BL (CHST11), and RF (LRRK2). The identified SNPs can be used as molecular markers for the genetic improvement of pork carcasses in the molecular-guided breeding of modern commercial pigs.


Carcass cutting is the most effective method for enhancing the commercial value of pork carcasses in the industry chain. However, the genetic mechanisms underlying carcass component weights remain elusive. In this study, we used a combination of single- and multi-locus models to increase the power of genome-wide association analysis. We identified 177 important genetic variants that are potentially promising candidate markers for marker-assisted selection in breeding. Further investigation revealed one quantitative trait locus region and several candidate genes (PPP3CA, CPEB4, ECH1, CACNB2, ZNF217, FGFRL1, CHST11, LRRK2) associated with the weights of seven carcass components in Duroc × Landrace × Yorkshire pigs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Suínos/genética , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
Genes (Basel) ; 13(11)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421806

RESUMO

The intuitive impression of pork is extremely important in terms of whether consumers are enthusiastic about purchasing it. Flesh color and intramuscular fat (IMF) are indispensable indicators in meat quality assessment. In this study, we determined the flesh color and intramuscular fat at 45 min and 12 h after slaughter (45 mFC, 45 mIMF, 12 hFC, and 12 hIMF) of 1518 commercial Duroc × Landrace × Large White (DLY) pigs. We performed a single nucleotide polymorphism (SNP) genome-wide association study (GWAS) analysis with 28,066 SNPs. This experiment found that the correlation between 45 mFC and 12 hFC was 0.343. The correlation between 45 mIMF and 12 hIMF was 0.238. The heritability of the traits 45 mFC, 12 hFC, 45 mIMF, and 12 hIMF was 0.112, 0.217, 0.139, and 0.178, respectively, and we identified seven SNPs for flesh color and three SNPs for IMF. Finally, several candidate genes regulating these four traits were identified. Three candidate genes related to flesh color were provided: SNCAIP and PRR16 on SSC2, ST3GAL4 on SSC5, and GALR1 on SSC1. A total of three candidate genes related to intramuscular fat were found, including ABLIM3 on SSC2, DPH5 on SSC4, and DOCK10 on SSC15. Furthermore, GO and KEGG analysis revealed that these genes are involved in the regulation of apoptosis and are implicated in functions such as pigmentation and skeletal muscle metabolism. This study applied GWAS to analyze the scoring results of flesh color and IMF in different time periods, and it further revealed the genetic structure of flesh color and IMF traits, which may provide important genetic loci for the subsequent improvement of pig meat quality traits.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Suínos/genética , Animais , Locos de Características Quantitativas/genética , Carne/análise , Polimorfismo de Nucleotídeo Único/genética , Fenótipo
8.
Foods ; 11(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36230219

RESUMO

Meat quality is of importance in consumer acceptance and purchasing tendency of pork. However, the genetic architecture of pork meat quality traits remains elusive. Herein, we conducted genome-wide association studies to detect single nucleotide polymorphisms (SNPs) and genes affecting meat pH and meat color (L*, lightness; a*, redness; b*, yellowness) in 1518 three-way crossbred pigs. All individuals were genotyped using the GeneSeek Porcine 50K BeadChip. In sum, 30 SNPs and 20 genes are found to be associated with eight meat quality traits. Notably, we detect one significant quantitative trait locus (QTL) on SSC15 with a 143 kb interval for meat pH (pH_12h), together with the most promising candidate TNS1. Interestingly, two newly identified SNPs located in the TTLL4 gene demonstrate the highest phenotypic variance of pH_12h in this QTL, at 2.67%. The identified SNPs are useful for the genetic improvement of meat quality traits in pigs by assigning higher weights to associated SNPs in genomic selection.

9.
BMC Genomics ; 23(1): 590, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964005

RESUMO

BACKGROUND: Carcass traits are important in pig breeding programs for improving pork production. Understanding the genetic variants underlies complex phenotypes can help explain trait variation in pigs. In this study, we integrated a weighted single-step genome-wide association study (wssGWAS) and copy number variation (CNV) analyses to map genetic variations and genes associated with loin muscle area (LMA), loin muscle depth (LMD) and lean meat percentage (LMP) in Duroc pigs. RESULTS: Firstly, we performed a genome-wide analysis for CNV detection using GeneSeek Porcine SNP50 Bead chip data of 3770 pigs. A total of 11,100 CNVs were detected, which were aggregated by overlapping 695 CNV regions (CNVRs). Next, we investigated CNVs of pigs from the same population by whole-genome resequencing. A genome-wide analysis of 21 pigs revealed 23,856 CNVRs that were further divided into three categories (851 gain, 22,279 loss, and 726 mixed), which covered 190.8 Mb (~ 8.42%) of the pig autosomal genome. Further, the identified CNVRs were used to determine an overall validation rate of 68.5% for the CNV detection accuracy of chip data. CNVR association analyses identified one CNVR associated with LMA, one with LMD and eight with LMP after applying stringent Bonferroni correction. The wssGWAS identified eight, six and five regions explaining more than 1% of the additive genetic variance for LMA, LMD and LMP, respectively. The CNVR analyses and wssGWAS identified five common regions, of which three regions were associated with LMA and two with LMP. Four genes (DOK7, ARAP1, ELMO2 and SLC13A3) were highlighted as promising candidates according to their function. CONCLUSIONS: We determined an overall validation rate for the CNV detection accuracy of low-density chip data and constructed a genomic CNV map for Duroc pigs using resequencing, thereby proving a value genetic variation resource for pig genome research. Furthermore, our study utilized a composite genetic strategy for complex traits in pigs, which will contribute to the study for elucidating the genetic architecture that may be influenced and regulated by multiple forms of variations.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Suínos/genética
10.
Porcine Health Manag ; 7(1): 39, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078468

RESUMO

BACKGROUND: Improving feed efficiency is economically and environmentally beneficial in the pig industry. A deeper understanding of feed efficiency is essential on many levels for its highly complex nature. The aim of this project is to explore the relationship between fecal metabolites and feed efficiency-related traits, thereby identifying metabolites that may assist in the screening of the feed efficiency of pigs. RESULTS: We performed fecal metabolomics analysis on 50 individuals selected from 225 Duroc x (Landrace x Yorkshire) (DLY) commercial pigs, 25 with an extremely high feed efficiency and 25 with an extremely low feed efficiency. A total of 6749 and 5644 m/z features were detected in positive and negative ionization modes by liquid chromatography-mass spectrometry (LC/MS). Regrettably, the PCA could not classify the the samples accurately. To improve the classification, OPLS-DA was introduced. However, the predictive ability of the OPLS-DA model did not perform well. Then, through weighted coexpression network analysis (WGCNA), we found that one module in each positive and negative mode was related to residual feed intake (RFI), and six and three metabolites were further identified. The nine metabolites were found to be involved in multiple metabolic pathways, including lipid metabolism (primary bile acid synthesis, linoleic acid metabolism), vitamin D, glucose metabolism, and others. Then, Lasso regression analysis was used to evaluate the importance of nine metabolites obtained by the annotation process. CONCLUSIONS: Altogether, this study provides new insights for the subsequent evaluation of commercial pig feed efficiency through small molecule metabolites, but also provide a reference for the development of new feed additives.

11.
Genes (Basel) ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477978

RESUMO

Growth traits are important economic traits of pigs that are controlled by several major genes and multiple minor genes. To better understand the genetic architecture of growth traits, we performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic regions and candidate genes that are associated with days to 100 kg (AGE), average daily gain (ADG), backfat thickness (BF) and lean meat percentage (LMP) in a Duroc pig population. In this study, 3945 individuals with phenotypic and genealogical information, of which 2084 pigs were genotyped with a 50 K single-nucleotide polymorphism (SNP) array, were used for association analyses. We found that the most significant regions explained 2.56-3.07% of genetic variance for four traits, and the detected significant regions (>1%) explained 17.07%, 18.59%, 23.87% and 21.94% for four traits. Finally, 21 genes that have been reported to be associated with metabolism, bone growth, and fat deposition were treated as candidate genes for growth traits in pigs. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses implied that the identified genes took part in bone formation, the immune system, and digestion. In conclusion, such full use of phenotypic, genotypic, and genealogical information will accelerate the genetic improvement of growth traits in pigs.


Assuntos
Criação de Animais Domésticos , Regulação da Expressão Gênica no Desenvolvimento , Locos de Características Quantitativas , Sus scrofa/crescimento & desenvolvimento , Animais , Feminino , Estudo de Associação Genômica Ampla , Masculino , Polimorfismo de Nucleotídeo Único , Carne de Porco , Sus scrofa/genética
12.
DNA Cell Biol ; 40(2): 272-282, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33297854

RESUMO

Feed efficiency (FE) is one of the most important economic traits in the porcine industry. In this study, high-throughput RNA sequencing (RNA-seq) was first utilized for brain tissue transcriptome analysis in pigs to indicate the potential genes and biological pathways related to FE in pigs. A total of 8 pigs with either extremely high-FE group (HE-group) or low-FE group (LE-group) were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) between the HE- and LE-group, and 430 DEGs were identified in brain tissues of pigs (|log2(FoldChange)| > 1; adjusted p-values <0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly enriched in synaptic signaling or transmission, and hormone secretion pathways, in which insulin secretion, and oxytocin signaling pathways were closely associated with FE by regulating feeding behavior and energy metabolism (adjusted p-values <0.05). Further, the transcription factors (TFs) analysis and gene co-expression network analysis indicated three hub differentially expressed TFs (NR2F2, TFAP2D, and HNF1B) that affected FE by mainly regulating feeding behavior, insulin sensitivity, or energy metabolism. Our findings suggest several potential TFs and biological pathways for further investigations of FE in pigs.


Assuntos
Ração Animal , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Suínos/genética , Suínos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ontologia Genética
13.
Sci Rep ; 10(1): 9874, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555275

RESUMO

Feed efficiency (FE) is an important trait in the porcine industry. Therefore, understanding the molecular mechanisms of FE is vital for the improvement of this trait. In this study, 6 extreme high-FE and 6 low-FE pigs were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) in the liver tissues of the 12 individuals, and 507 DEGs were identified between high-FE pigs (HE- group) and low-FE pigs (LE- group). A gene ontology (GO) enrichment and pathway enrichment analysis were performed and revealed that glycolytic metabolism and lipid synthesis-related pathways were significantly enriched within DEGs; all of these DEGs were downregulated in the HE- group. Moreover, Weighted gene co-expression analysis (WGCNA) revealed that oxidative phosphorylation, thermogenesis, and energy metabolism-related pathways were negatively related to HE- group, which might result in lower energy consumption in higher efficiency pigs. These results implied that the higher FE in the HE- group may be attributed to a lower glycolytic, energy consumption and lipid synthesizing potential in the liver. Furthermore, our findings suggested that the inhibition of lipid synthesis and glucose metabolic activity in the liver may be strategies for improving the FE of DLY pigs.


Assuntos
Perfilação da Expressão Gênica/métodos , Glicólise/genética , Lipogênese/genética , Fígado/metabolismo , Transcriptoma , Ração Animal/análise , Animais , Metabolismo Energético/genética , Fosforilação Oxidativa , Fenótipo , Mapas de Interação de Proteínas/genética , Suínos , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA