Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 42026-42033, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366664

RESUMO

The complex vector beams yield up an abundance of polarization information that has not yet been well utilized in information encoding. In this paper, we propose a polarization encoding scheme with the non-orthogonal polarization states using a stationary vector beam. Recognizing those non-orthogonal polarization states is assisted by the structured patterns of the single vector beams under different polarization projections. We show that one can achieve different capacities of encoding bits by changing the step of the polarization angle with the single vector beam. We also demonstrate the non-orthogonal polarization encoding scheme can be well decoded with the machine learning classification algorithm. A 64×64 gray image is successfully transmitted by using 4 bits/symbol encoding-decoding scheme with 99.94 % transmission accuracy. Besides, by extending the encoding-decoding scheme to 8 bits/symbol based on the same single vector beam, we achieve a higher transmission rate with 65.58% transmission accuracy. Our work holds promise for small-angle non-orthogonal polarization encoding for free-space optical communications.

2.
Opt Express ; 28(22): 32377-32385, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114925

RESUMO

Recently, it has been demonstrated that a nonlinear spatial filter using second harmonic generation can implement a visible edge enhancement under invisible illumination, and it provides a promising application in biological imaging with light-sensitive specimens. But with this nonlinear spatial filter, all phase or intensity edges of a sample are highlighted isotropically, independent of their local directions. Here we propose a vectorial one to cover this shortage. Our vectorial nonlinear spatial filter uses two cascaded nonlinear crystals with orthogonal optical axes to produce superposed nonlinear vortex filtering. We show that with the control of the polarization of the invisible illumination, one can highlight the features of the samples in special directions visually. Moreover, we find the intensity of the sample arm can be weaker by two orders of magnitude than the filter arm. This striking feature may offer a practical application in biological imaging or microscopy, since the light field reflected from the sample is always weak. Our work offers an interesting way to see and emphasize the different directions of edges or contours of phase and intensity objects with the polarization control of the invisible illumination.


Assuntos
Filtração/instrumentação , Aumento da Imagem/instrumentação , Imagem Óptica/instrumentação , Óptica e Fotônica/instrumentação , Desenho de Equipamento , Luz , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA