RESUMO
The periodic anti-seasonal inundation of the Three Gorges Reservoir (TGR) leads to changes in the molecular composition of dissolved organic matter (DOM) in riparian soils, further impacting the geochemical processes and ecological risk of heavy metals. However, the intrinsic driving mechanisms of DOM influencing the cadmium (Cd), a major pollutant in riparian soils in TGR, at the molecular level remain unclear. In this study, the DOM molecular composition, labile Cd in riparian soils and the key driving mechanism before and after flooding were explored using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the diffusive gradients in thin films (DGT) and partial least squares path modeling (PLS-PM). A spectral analysis revealed that after flooding, the relative abundance of terrestrial humic-like substances decreased whereas that of microbial humic-like substances increased. Furthermore, FT-ICR MS analysis revealed that the relative abundance of lignin, the main molecular components of DOM in riparian soils, increased after flooding. The linkage of DOM with the concentration and kinetic processes of labile Cd indicated that the higher aromaticity and unsaturation, larger molecular weight, and higher humification level of DOM promoted the mobility of labile Cd from the soil solid phase to the liquid phase. In particular, our findings indicated that at the molecular level, the most significant factor influencing the mobility of labile Cd was lignin, which was primarily governed by the complexation of lignin with labile Cd. The complexation mechanism between lignin and labile Cd resulted in increased ecotoxicological risk of labile Cd after flooding, while the overall ecotoxicological risk was low in riparian soils in TGR. This study provides better insight into the geochemical cycling and fate of toxic elements in reservoir ecosystems under the change of hydrological regime.
RESUMO
Cardiac fibrosis has emerged as the primary cause of morbidity, disability, and even mortality in numerous nations. In light of the advancements in precision medicine strategies, substantial attention has been directed toward the development of a practical and precise drug screening platform customized for individual patients. In this study, we introduce a biomimetic cardiac fibrosis-on-a-chip incorporating structural color hydrogels (SCHs) to enable optical high-throughput drug screening. By cocultivating a substantial proportion of cardiac fibroblasts (CFBs) with cardiomyocytes on the SCH, this biomimetic fibrotic microtissue successfully replicates the structural components and biomechanical properties associated with cardiac fibrosis. More importantly, the structural color shift observed in the SCH can be indicative of cardiac contraction and relaxation, making it a valuable tool for evaluating fibrosis progression. By incorporating such fibrotic microtissue into a microfluidic gradient chip, we develop a biomimetic optical cardiac fibrosis-on-a-chip platform that accurately and efficiently screens potential anti-fibrotic drugs. These characteristics suggest that this microphysiological platform possesses the capability to establish a preclinical framework for screening cardiac drugs, and may even contribute to the advancement of precision medicine.
RESUMO
In plants, carbohydrates are central products of photosynthesis. Rice is a staple that contributes to the daily calorie intake for over half of the world's population. Hence, the primary objective of rice cultivation is to maximize carbohydrate production. The "source-sink" theory is proposed as a valuable principle for guiding crop breeding. However, the "flow" research lag, especially in sugar transport, has hindered high-yield rice breeding progress. This review concentrates on the genetic and molecular foundations of sugar transport and its regulation, enhancing the fundamental understanding of sugar transport processes in plants. We illustrate that the apoplastic pathway is predominant over the symplastic pathway during phloem loading in rice. Sugar transport proteins, such as SUTs and SWEETs, are essential carriers for sugar transportation in the apoplastic pathway. Additionally, we have summarized a regulatory pathway for sugar transport genes in rice, highlighting the roles of transcription factors (OsDOF11, OsNF-YB1, OsNF-YC12, OsbZIP72, Nhd1), OsRRM (RNA Recognition Motif containing protein), and GFD1 (Grain Filling Duration 1). Recognizing that the research shortfall in this area stems from a lack of advanced research methods, we discuss cutting-edge analytical techniques such as Mass Spectrometry Imaging and single-cell RNA sequencing, which could provide profound insights into the dynamics of sugar distribution and the associated regulatory mechanisms. In summary, this comprehensive review serves as a valuable guide, directing researchers toward a deep understanding and future study of the intricate mechanisms governing sugar transport.
RESUMO
In recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-on-chips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on. In this perspective, we present a review of organs-on-chips for biomedical applications. After introducing the key elements and manufacturing craft of organs-on-chips, we intend to review their cut-edging applications in biomedical fields, incorporating biological analysis, drug development, robotics and so on. Finally, the emphasis is focused on the perspectives of organs-on-chips.
RESUMO
Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.
Assuntos
Técnicas Biossensoriais , Coloides , Fótons , Coloides/química , Técnicas Biossensoriais/métodos , Cristalização/métodos , Cor , Humanos , Óptica e Fotônica/métodos , AnimaisRESUMO
Since the completion of Three Gorges Dam, the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) experiences the periodic anti-seasonal inundation. However, knowledge for mechanisms of mobilization and transformation of arsenic (As) in WLFZ soils of the TGR remains scarce. To address this gap, a combination of field observation and simulated flooding experiments attempts to illustrate the As mobilization, the transformation between As(V) and As(III), and the factors driving these processes. The study revealed that anti-seasonal inundation (with a temperature at 13 â) mitigated As release from submerged soils. Interestingly, the total As and ratio of As(III) (the more toxic form of As) concentrations in porewater at 13 â was lower, and the prevalence of As(III) occurred later than those at 32 °C (imitate the seasonal inundation condition). The results indicated that the As reduction and the corresponding toxic risks in submerged soils were alleviated under anti-seasonal inundation. The study proposes the reduction of As-bearing manganese (Mn) mineral assemblages and competitive adsorption of dissolved organic carbon (DOC) as primary mechanisms for As mobilization. Furthermore, microorganism-mediated detoxification/reduction processes involving DOC, nitrogen, and Mn (oxyhydr)oxides were identified as central pathways for As(III) enrichment under anti-seasonal inundation. This study enhances understandings of the biogeochemical processes and fate of As in WLFZ soils influenced by artificial regulation of the reservoir.
RESUMO
OBJECTIVE: To compare the diagnostic value of multi-slice computed tomography (CT) and magnetic resonance imaging (MRI) in liver tumors. METHODS: Retrospective selection of CT and MRI imaging data from 109 cases of liver tumors treated in our hospital from January 2020 to March 2023. The selection was determined through pathological examination. RESULTS: According to the pathological examination results, 61 cases were benign tumors, and 48 cases were malignant tumors. The hepatic portal flow (HPF), hepatic artery perfusion index (HPI) and hepatic artery perfusion (HAF) of malignant tumors were significantly lower than in benign tumors (P<0.05). The signal enhancement ratio of malignant tumors was significantly higher than in benign tumors, and the peak time was significantly lower than in benign tumors (P<0.05). The sensitivity (97.92%) and accuracy (97.25%) of the combined examination were significantly higher than those of MRI (83.33%, 90.83%) or CT alone (81.25%, 88.99%) (P<0.05). CONCLUSION: CT and MRI have high application value in the diagnosis and evaluation of liver tumors, and the combination of these two methods can further improve diagnostic sensitivity and accuracy, providing an objective reference for early diagnosis and treatment of liver cancer.
.Assuntos
Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Estudos de Casos e Controles , Sensibilidade e Especificidade , Artéria Hepática/diagnóstico por imagem , Fígado/diagnóstico por imagemRESUMO
Advanced artificial nerve conduits offer a promising alternative for nerve injury repair. Current research focuses on improving the therapeutic effectiveness of nerve conduits by optimizing scaffold materials and functional components. In this study, a novel poly(3,4-ethylenedioxythiophene) (PEDOT)-integrated fish swim bladder (FSB) is presented as a conductive nerve conduit with ordered topology and electrical stimulation to promote nerve regeneration. PEDOT nanomaterials and adhesive peptides (IKVAV) are successfully incorporated onto the decellularized FSB substrate through pre-coating with polydopamine. The obtained PEDOT/IKVAV-integrated FSB substrate exhibits outstanding mechanical properties, high electrical conductivity, stability, as well as excellent biocompatibility and bioadhesive properties. In vitro studies confirm that the PEDOT/IKVAV-integrated FSB can effectively facilitate the growth and directional extension of pheochromocytoma 12 cells and dorsal root ganglion neurites. In addition, in vivo experiments demonstrate that the proposed PEDOT/IKVAV-integrated FSB conduit can accelerate defective nerve repair and functional restoration. The findings indicate that the FSB-derived conductive nerve conduits with multiple regenerative inducing signals integration provide a conducive milieu for nerve regeneration, exhibiting great potential for repairing long-segment neural defects.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Regeneração Nervosa , Polímeros , Animais , Polímeros/química , Regeneração Nervosa/fisiologia , Alicerces Teciduais/química , Sacos Aéreos , Peixes , Condutividade Elétrica , Materiais BiocompatíveisRESUMO
Nerve guidance conduits (NGCs) are considered as promising treatment strategy and frontier trend for peripheral nerve regeneration, while their therapeutic outcomes are limited by the lack of controllable drug delivery and available physicochemical cues. Herein, novel aligned piezoelectric nanofibers derived hydrogel NGCs with ultrasound (US)-triggered electrical stimulation (ES) and controllable drug release for repairing peripheral nerve injury are proposed. The inner layer of the NGCs is the barium titanate piezoelectric nanoparticles (BTNPs)-doped polyvinylidene fluoride-trifluoroethylene [BTNPs/P(VDF-TrFE)] electrospinning nanofibers with improved piezoelectricity and aligned orientation. The outer side of the NGCs is the thermoresponsive poly(N-isopropylacrylamide) hybrid hydrogel with bioactive drug encapsulation. Such NGCs can not only induce neuronal-oriented extension and promote neurite outgrowth with US-triggered wireless ES, but also realize the controllable nerve growth factor release with the hydrogel shrinkage under US-triggered heating. Thus, the NGC can positively accelerate the functional recovery and nerve axonal regeneration of rat models with long sciatic nerve defects. It is believed that the proposed US-responsive aligned piezoelectric nanofibers derived hydrogel NGCs will find important applications in clinic neural tissue engineering.
Assuntos
Hidrogéis , Nanofibras , Regeneração Nervosa , Animais , Regeneração Nervosa/efeitos dos fármacos , Hidrogéis/química , Nanofibras/química , Ratos , Ondas Ultrassônicas , Compostos de Bário/química , Nervo Isquiático/fisiologia , Nervo Isquiático/efeitos dos fármacos , Titânio/química , Polivinil/química , Alicerces Teciduais/química , Resinas Acrílicas/química , Traumatismos dos Nervos Periféricos/terapia , Ratos Sprague-Dawley , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Liberação Controlada de Fármacos , Estimulação Elétrica , Nanopartículas/química , Engenharia Tecidual/métodosRESUMO
The construction of cell mimics replicating the surface landscape and biological functions of the cell membrane offers promising prospects for biomedical research and applications. Inspired by the inherent recognition capability of immune cells toward pathogens, we have fabricated activated macrophage membrane-coated magnetic silicon nanoparticles (aM-MSNPs) in this work as an isolation and recognition tool for enhanced bacterial analysis. Specifically, the natural protein receptors on the activated macrophage membrane endow the MSNPs with a broad-spectrum binding capacity to different pathogen species. By further incorporation of a tyramide amplification strategy, direct naked-eye analysis of specific bacteria with a detection limit of 10 CFU/mL can be achieved. Moreover, application to the diagnosis of urinary tract infections has also been validated, and positive samples spiked with bacteria can be clearly distinguished with an accuracy of 100%. This work may enrich cell membrane-based architectures and provide an experimental paradigm for point-of-care testing (POCT) detection of bacteria.
RESUMO
In this work, a molecular-level kinetic model of ethane/propane steam cracking was developed by using a hybrid structural unit-bond electron matrix framework. The molecular-level simulation was conducted, creating a detailed feedstock composition, formulating the reaction rules, and automating the generation and visualization of reaction networks. Ordinary differential equations were automatically generated based on the Arrhenius equation, while the kinetic parameters were reduced via linear free energy relations (LFERs). Furthermore, proper mathematical models for mass transfer, heat transfer, and momentum transfer within the cracking furnace were integrated into the molecular-level kinetic model, enabling the simultaneous calculation of the transfer process and chemical kinetics in steam cracking. The model was validated by its precise prediction of product yields, outlet pressure, and outlet temperature, which were collected from an industrial gas-cracking furnace.
RESUMO
Organ-on-chips can highly simulate the complex physiological functions of organs, exhibiting broad application prospects in developmental research, disease simulation, as well as new drug research and development. However, there is still less concern about effectively constructing cochlea-on-chips. Here, a novel cochlear organoids-integrated conductive hydrogel biohybrid system with cochlear implant electroacoustic stimulation (EAS) for cochlea-on-a-chip construction and high-throughput drug screening, is presented. Benefiting from the superior biocompatibility and electrical property of conductive hydrogel, together with cochlear implant EAS, the inner ear progenitor cells can proliferate and spontaneously shape into spheres, finally forming cochlear organoids with good cell viability and structurally mature hair cells. By incorporating these progenitor cells-encapsulated hydrogels into a microfluidic-based cochlea-on-a-chip with culture chambers and a concentration gradient generator, a dynamic and high-throughput evaluation of inner ear disease-related drugs is demonstrated. These results indicate that the proposed cochlea-on-a-chip platform has great application potential in organoid cultivation and deafness drug evaluation.
Assuntos
Cóclea , Hidrogéis , Dispositivos Lab-On-A-Chip , Organoides , Animais , Hidrogéis/química , Organoides/citologia , Implantes Cocleares , Células-Tronco/citologia , Sobrevivência Celular , Humanos , CamundongosRESUMO
The construction and operation of the Three Gorges Dam occluded sediment transportation in the Yangtze River. However, the sources, transport processes, and environmental impacts of these sediments on the Three Gorges Reservoir (TGR) remain unclear. Here, we used rare earth elements (REEs) to trace the transport pathways of sediments in the TGR, China. Geochemical characteristics including the chemical composition and fractionation, temporal and spatial distribution, and potential sources of REEs were also evaluated in this study. The individual REEs concentration in the TGR sediments followed the Oddo-Harkins rule, with the mean REEs value of 207.33 µg/g. REEs concentrations in the midstream were higher than those in the upstream and downstream of the TGR. Statistical analysis showed that water impoundment phase had no significant influence on the distribution of REEs. TGR sediments are mainly derived from terrigenous detrital particulates, characterized by a distinctive enrichment in light REEs, with its percentage higher than 90 % of the total REEs. The significant positive correlation among the REEs confirmed that they are co-existed and shared the similar sources. Multiple provenance analysis approaches using discriminant function analyses, provenance indices, and La/Yb-La/Sm-Gd/Yb ternary diagrams further indicated that the REEs in sediments originated from the weathering of mudstone in the basin of TGR. After periodic water level fluctuation for more than six years, the chemical compositions of REEs in TGR sediments slightly differed from those of the Yangtze River sediments before TGR construction, but were similar to those of the downstream of the Yangtze River. Therefore, this study indicated that the construction and operation of the TGR changed the chemical compositions and the origin of the sediments in the Yangtze River, which can provide useful insights into the transport pathways of TGR sediments and their impacts on the fluvial environment.
RESUMO
Sediments act as sinks of microplastics (MPs) derived from terrestrial ecosystems. However, the fate and transport of MPs at the zone of sediment-overlying water in reservoir environment are poorly understood. Here, the MPs distribution patterns in surface sediments of the Three Gorges Reservoir (TGR) and dominant mechanisms responsible for the sinking of MPs at the zone of sediment-overlying water were comprehensively investigated. The predominant occurrence of small microplastics (<300 µm, SMPs) in surface sediments of the TGR was found, with buoyant polyethene (PE) was dominant polymer types. Interestingly, the high abundance of SMPs in sediments correlated well with the Ca2+/Mg2+ in overlying water, suggesting that divalent cations in overlying water may enhance the preferential deposition of SMPs. Simulation sinking experiments under the presence of Microcystis aeruginosa and two divalent cations using different-sized PE MPs demonstrated that the greater deposition of SMPs was mainly the result of the formation of biogenic calcite on the surface of MPs rather than magnesium minerals, which provides stronger ballasting effects for SMPs than for large MPs. This study first highlights that the impact of biomineralization on preferential sinking of SMPs and enhances the understanding of the transport behaviour of MPs in aquatic environment.
RESUMO
The increasing contamination of water systems by antibiotics and heavy metals has become a growing concern. The intimately coupled photocatalysis and biodegradation (ICPB) approach offers a promising strategy for the effective removal of mixed pollutants. Despite some prior research on ICPB applications, the mechanism by which ICPB eliminates mixed pollutants remains unclear. In our current study, the ICPB approach achieved approximately 1.53 times the degradation rate of ciprofloxacin (CIP) and roughly 1.82 times the reduction rate of Cr (VI) compared to photocatalysis. Remarkably, after 30 days, the ICPB achieved a 96.1% CIP removal rate, and a 97.8% reduction in Cr (VI). Our investigation utilized three-dimensional fluorescence analysis and photo-electrochemical characterization to unveil the synergistic effects of photocatalysis and biodegradation in removal of CIP and Cr (VI). Incorporation of B-Bi3O4Cl (B-BOC) photocatalyst facilitated electron-hole separation, leading to production of ·O2-, ·OH, and h+ species which interacted with CIP, while electrons reduced Cr (VI). Subsequently, the photocatalytic products were biodegraded by a protective biofilm. Furthermore, we observed that CIP, acting as an electron donor, promoted the reduction of Cr (VI). The microbial communities revealed that the number of bacteria favoring pollutant removal increased during ICPB operation, leading to a significant enhancement in performance.
Assuntos
Ciprofloxacina , Poluentes Ambientais , Antibacterianos , Biodegradação Ambiental , Cromo/química , CatáliseRESUMO
Cardiac fibrosis acts as a serious worldwide health issue due to its prevalence in numerous forms of cardiac disease and its essential link to cardiac failure. Considering the efficiency of stem cell therapy for cardiac fibrosis, great efforts have been dedicated to developing accurate models for investigating their underlying therapeutic mechanisms. Herein we present an elaborate biomimetic cardiac fibrosis-on-a-chip based on Janus structural color film (SCF) to provide microphysiological visuals for stem cell therapeutic studies. By coculturing cardiomyocytes (CMs) and cardiac fibroblasts (FBs) on Janus SCF with fibrosis induction, the chip can recreate physiological intercellular crosstalk within the fibrotic microenvironment, elucidating the physiological alterations of fibrotic hearts. In particular, the Janus structural color film possesses superior perceptual capabilities for capturing and responding to a weak cardiac force, demonstrating synchronized structural color shifts. Based on these features, we have not only explored the dynamic relationship between color mapping and the evaluated disease phenotype but also demonstrated the self-reporting capacity of the cardiac fibrosis-on-a-chip for the assessment of mesenchymal stem cell-derived exosome therapy. These features suggest that such a chip can potentially facilitate the evolution of precision medicine strategies and create a protocol for preclinical cardiac drug screening.
Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Biomimética , Miócitos Cardíacos/patologia , Fibrose , Dispositivos Lab-On-A-ChipRESUMO
The integrated photocatalysis and fluidized bed biofilm reactor (FBBR) is an attractive wastewater treatment technique for managing wastewater containing antibiotics. However, the fast recombination of photoinduced charge and low microbial activity limit the degradation and mineralization efficiency for antibiotics. To address this, we attempt to introduce magnetic field (MF) to the integrated system with B-doped Bi3O4Cl as the photocatalysts to effectively improve removal and mineralization of ciprofloxacin (CIP). As a consequence, the degradation rate reaches 96% after 40 d in integrated system with MF. The biofilm inside the integrated system with MF carrier can mineralize the photocatalytic products, thereby increasing the total organic carbon (TOC) degradation rate by more than 32%. The electrochemical experiment indicates the Lorentz force generated by MF can accelerate charge separation, increasing the electron concentration. Simultaneously, the increased amounts of electrons lead to the generation of more ·OH and ·O2-. MF addition also results in increased biomass, increased biological respiratory activity, microbial community evolution and accelerated microbial metabolism, enabling more members to biodegrade photocatalytic intermediates. Therefore, applied MF is an efficient method to enhance CIP degradation and mineralization by the integrated system.
Assuntos
Reatores Biológicos , Águas Residuárias , Antibacterianos , Ciprofloxacina , BiofilmesRESUMO
Ultrasonication allows sludge reduction to be performed in situ during wastewater treatment, and the reflux point of the lysed sludge affects this performance. This study investigated the effects of reflux point (anaerobic stage, carbon/nitrogen (C/N) lowest stage, and aerobic stage) on sludge lysis-cryptic growth in an anaerobic/aerobic reactor and variations in the sludge and microbial community. The best reflux point occurred at the lowest C/N ratio stage, and a 50.96% reduction in excess sludge was achieved. The reflux of the lysed sludge to the aerobic stage reduced nitrogen and phosphorus removal. The reflux of the lysed sludge decreased the average sludge size, reaching 29.2 µm when reflux to the aerobic stage. Scanning electron microscopy showed that the sludge surface was unaffected by the reflux point. The Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy results showed that the most prominent variation in the intensity of the sludge functional groups occurred when the reflux was at the lowest C/N stage. The amount of extracellular polymeric substances decreased the most during reflux to the anaerobic stage. The sludge microbial communities varied with the reflux point, and the dominant phyla during reflux to the anaerobic, lowest C/N, and aerobic stages were Bacteroidetes, Firmicutes, and Bacteroidetes, respectively. Furthermore, the reflux point did not alter the metabolic pathway of sludge microorganisms but increased the number of enzymes in metabolic pathways.
Assuntos
Microbiota , Águas Residuárias , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Nitrogênio , CarbonoRESUMO
Organs-on-chips are microengineered microfluidic living cell culture devices with continuously perfused chambers penetrating to cells. By mimicking the biological features of the multicellular constructions, interactions among organs, vascular perfusion, physicochemical microenvironments, and so on, these devices are imparted with some key pathophysiological function levels of living organs that are difficult to be achieved in conventional 2D or 3D culture systems. In this technology, biomaterials are extremely important because they affect the microstructures and functionalities of the organ cells and the development of the organs-on-chip functions. Thus, herein, we provide an overview on the advances of biomaterials for the construction of organs-on-chips. After introducing the general components, structures, and fabrication techniques of the biomaterials, we focus on the studies of the functions and applications of these biomaterials in the organs-on-chips systems. Applications of the biomaterial-based organs-on-chips as alternative animal models for pharmaceutical, chemical, and environmental tests are described and highlighted. The prospects for exciting future directions and the challenges of biomaterials for realizing the further functionalization of organs-on-chips are also presented.
Assuntos
Materiais Biocompatíveis , Biomimética , Animais , Materiais Biocompatíveis/uso terapêutico , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Sistemas MicrofisiológicosRESUMO
Microplastics of size <25 µm possess globally transportable features, but the impact of precipitation on their transport remains unclear. Here, microplastics were detected in all 10 studied rainfalls in Beijing, with <25 µm microplastics present in 8 rainfalls. Interestingly, microplastic abundance (7590-136,778 items·m-3) was tentatively linked to maximum rainfall intensity, with <25 µm microplastics making up 39.6 (±27.5)% of the total count. The composition of <25 µm microplastics differed from that of larger microplastics, although both mainly comprised polystyrene, polyethylene, and polypropylene. The microplastic communities differed among rainfalls, suggesting that atmospheric transport is a highly dynamic process. The first rainfall exhibited the highest microplastic abundance and community diversity after long-term exposure to dry atmospheric environment. The deposited microplastics were unstable and highly fragmented according to the conditional fragmentation model. The wet deposition rate of the microplastics was calculated as 2-463 µg·m-2 (146-8629 items·m-2) per rain, amounting to 25.44 tons per annum in Beijing. Although <25 µm microplastics represented a negligible proportion (0.00-1.24%) of the overall mass load of microplastics, their numerical abundance was high. Our results demonstrate that precipitation is an effective mechanism for removing airborne microplastics, which may enter urban soils and waters, exacerbate microplastic burdens in the environment, and cause potential risk for human health.