Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Huan Jing Ke Xue ; 44(9): 4954-4964, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699813

RESUMO

The typical river-lake ecotone (tail end area) of Poyang Lake, which is a sensitive area and prone to outbreaks of cyanobacteria bloom, is vulnerable to frequent human activities. To explore the diversity of phytoplankton community structure and the relevant driving mechanism in the typical river lake junction area of Poyang Lake, the water quality and phytoplankton at seven sampling points in the typical river lake junction area of Poyang Lake, at six sampling points in the middle section of Poyang Lake River, and at one sampling point in the main lake area were investigated in the field from 2019 to 2020 (dry season), April (flood season), July (wet season), and October (recession period). The results showed that there were seven phyla and 64 genera of phytoplankton in the typical river-lake ecotone of Poyang Lake, and the biomass and relative abundance of phytoplankton were dominated by diatoms and cyanobacteria. The biomass and abundance in the east of the typical river-lake ecotone of Poyang Lake were generally higher than those in the west, and the biomass and abundance in the river-lake ecotone were higher than those in the middle of the river. The dominant degree of cyanobacteria in the lake area and the river-lake ecotone was large, and the dominant degree of diatoms in the middle section of the river was large. The Monte Carlo test results showed that total nitrogen (TN), total phosphorus (TP), orthophosphate phosphorus (PO43--P), water depth (WD), water temperature (WT), and transparency (SD) were significantly related environmental factors affecting the distribution of the phytoplankton community. Redundancy analysis results showed that the typical river-lake ecotone in the west of Poyang Lake was highly affected by the hydration factors (TN, TP, and PO43--P), and the hydrological factors (WT, WD, and SD) in the typical river-lake ecotone in the east were highly significant. The impact factors of phytoplankton in the typical river-lake ecotone of Poyang Lake were seasonal, being greatly affected by hydration factors in winter and hydrological factors in summer.


Assuntos
Diatomáceas , Fitoplâncton , Humanos , Rios , Biomassa , Nitrogênio , Fósforo
2.
Transbound Emerg Dis ; 67(6): 2971-2982, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32531138

RESUMO

Currently, COVID-19 has been reported in nearly all countries globally. To date, little is known about the viral shedding duration, clinical course and treatment efficacy of COVID-19 near Hubei Province, China. This multicentre, retrospective study was performed in 12 hospitals in Henan and Shaanxi Provinces from 20 January to 8 February 2020. Clinical outcomes were followed up until 26 March 2020. The viral shedding duration, full clinical course and treatment efficacy were analysed in different subgroups of patients. A total of 149 COVID-19 patients were enrolled. The median age was 42 years, and 61.1% (91) were males. Of them, 133 (89.3%) had fever, 131 of 144 (91%) had pneumonia, 27 (18.1%) required intensive care unit (ICU) management, 3 (2%) were pregnant, and 3 (2%) died. Two premature newborns were negative for SARS-CoV-2. In total, the median SARS-CoV-2 shedding period and clinical course were 12 (IQR: 9-17; mean: 13.4, 95% CI: 12.5, 14.2) and 20 (IQR: 16-24; mean: 21.2, 95% CI: 20.1, 22.3) days, respectively, and ICU patients had longer median viral shedding periods (21 [17-24] versus 11 [9-15]) and clinical courses (30 [22-33] vs. 19 [15.8-22]) than non-ICU patients (both p < .0001). SARS-CoV-2 clearances occurred at least 2 days before fatality in 3 non-survivors. Current treatment with any anti-viral agent or combination did not present the benefit of shortening viral shedding period and clinical course (all p > .05) in real-life settings. In conclusion, the viral shedding duration and clinical course in Henan and Shaanxi Provinces were shorter than those in Hubei Province, and current anti-viral therapies were ineffective for shortening viral shedding duration and clinical course in real-world settings. These findings expand our knowledge of the SARS-CoV-2 infection and may be helpful for management of the epidemic outbreak of COVID-19 worldwide. Further studies concerning effective anti-viral agents and vaccines are urgently needed.


Assuntos
Antivirais/administração & dosagem , COVID-19/terapia , SARS-CoV-2/fisiologia , Eliminação de Partículas Virais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Pré-Escolar , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
3.
Mol Biol Rep ; 42(5): 927-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25421647

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in the regulation of gene expression. MiR-1908 is a recently identified miRNA that is highly expressed in human adipocytes. However, it is not known what role of miR-1908 is involved in the regulation of human adipocytes. In this study, we demonstrate that the level of miR-1908 increases during the adipogenesis of human multipotent adipose-derived stem (hMADS) cells and human preadipocytes-visceral. Overexpression of miR-1908 in hMADS cells inhibited adipogenic differentiation and increased cell proliferation, suggesting that miR-1908 is involved in the regulation of adipocyte cell differentiation and metabolism, and, thus, may have an effect on human obesity.


Assuntos
Adipócitos/fisiologia , Adipogenia/fisiologia , MicroRNAs/fisiologia , Adipogenia/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética
4.
Mol Cell Endocrinol ; 393(1-2): 65-74, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24931160

RESUMO

Visceral obesity is an independent risk factor for metabolic syndrome, and abnormal fat accumulation is linked to increases in the number and size of adipocytes. MiR-146b was a miRNA highly expressed in mature adipocytes while very lowly expressed in human mesenchymal stem cells (hMSCs) and human visceral preadipocytes (vHPA). In this paper, we mainly focused on the roles of miR-146b in adipogenesis. We found miR-146b could inhibit the proliferation of visceral preadipocytes and promote their differentiation. MiR-146b in human visceral adipocytes inhibited the expression of KLF7, a member of the Kruppel-like transcription factors, as demonstrated by a firefly luciferase reporter assay, indicating that KLF7 is a direct target of the endogenous miR-146b. MiR-146b expression was significantly altered in visceral and subcutaneous adipose tissues in human overweight and obese subjects, and in the epididymal fat tissues and brown fat tissues of diet-induced obese mice. Our data indicates that miR-146b may be a new therapeutic target against human visceral obesity and metabolic dysfunction.


Assuntos
Adipócitos/patologia , Adipogenia/genética , Diferenciação Celular , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Obesidade/genética , Animais , Western Blotting , Ciclo Celular/genética , Proliferação de Células , Humanos , Camundongos , Camundongos Obesos , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Cell Biochem Biophys ; 70(2): 771-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24771406

RESUMO

Obesity has become a global public health problem associated with complications including type 2 diabetes, cardiovascular disease, and several cancers. Adipocyte differentiation (adipogenesis) plays an important role in obesity and energy homeostasis. Adipose tissue secretes multiple cytokines and adipokines which can cause the complications of obesity, especially insulin resistance. TNF-α, IL-6, leptin, and resistin have been identified as the main regulators of obesity and insulin activity. miR-378 is highly induced during adipogenesis and has been reported to be positively regulated in adipogenesis. In the current study, matured human adipocytes were treated with TNF-α, IL-6, leptin, or resistin on the 15th day after the induction of human pre-adipocyte differentiation. We demonstrated that TNF-α, IL-6, and leptin upregulated miR-378 expression indicating that miR-378 probably is a novel mediator in the development of insulin resistance related to obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Interleucina-6/farmacologia , Leptina/farmacologia , MicroRNAs/genética , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/metabolismo , Humanos
6.
Cell Biochem Biophys ; 68(2): 283-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23801157

RESUMO

During the development of obesity, adipose tissue releases a host of different adipokines and inflammatory cytokines, such as leptin, resistin, tumor necrosis factor α (TNF-α), Interleukin-6 (IL-6), and adiponectin, which mediate insulin resistance. Recently, some microRNAs (miRNAs) regulated by adiponectin were identified as novel targets for controlling adipose tissue inflammation. Therefore, the relationship between adipokines and miRNA is worth studying. MiR-335 is an adipogenesis-related miRNA and implicated in both fatty acid metabolism and lipogenesis. In this study, we focused on the association of miR-335 and adipokines, and examined the expression trend of miR-335 during human adipocyte differentiation. Our results showed that miR-335 is significantly upregulated with treatment of leptin, resistin, TNF-α, and IL-6 in human mature adipocytes, and its expression elevated in the process of adipocyte differentiation. Interestingly, the transcriptional regulation of miR-335 by these adipokines seems independent of its host gene (mesoderm-specific transcript homolog, MEST). Thus, we cloned and identified potential promoter of miR-335 within the intron of MEST. As a result, a fragment about 600-bp length upstream sequences of miR-335 had apparent transcription activity. These findings indicated a novel role for miR-335 in adipose tissue inflammation, and miR-335 might play an important role in the process of obesity complications via its own transcription mechanism.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Adipogenia , Adipocinas/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Interleucina-6/farmacologia , Leptina/farmacologia , Obesidade/metabolismo , Obesidade/patologia , Regiões Promotoras Genéticas , Resistina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
7.
Cell Biochem Biophys ; 66(3): 489-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23274913

RESUMO

NYGGF4, also known as phosphotyrosine interaction domain containing 1(PID1), is a recently discovered gene which is involved in obesity-related insulin resistance (IR) and mitochondrial dysfunction. We aimed to further elucidate the effects and mechanisms underlying NYGGF4-induced IR by investigating the effect of overexpressing mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA transcription and replication, on NYGGF4-induced IR and mitochondrial abnormalities in 3T3-L1 adipocytes. Overexpression of TFAM increased the mitochondrial copy number and ATP content in both control 3T3-L1 adipocytes and NYGGF4-overexpressing adipocytes. Reactive oxygen species (ROS) production was enhanced in NYGGF4-overexpressing adipocytes and reduced in TFAM-overexpressing adipocytes; co-overexpression of TFAM significantly attenuated ROS production in NYGGF4-overexpressing adipocytes. However, overexpression of TFAM did not affect the mitochondrial transmembrane potential (ΔΨm) in control 3T3-L1 adipocytes or NYGGF4-overexpressing adipocytes. In addition, co-overexpression of TFAM-enhanced insulin-stimulated glucose uptake by increasing Glucose transporter type 4 (GLUT4) translocation to the PM in NYGGF4-overexpressing adipocytes. Overexpression of NYGGF4 significantly inhibited tyrosine phosphorylation of Insulin receptor substrate 1 (IRS-1) and serine phosphorylation of Akt, whereas overexpression of TFAM strongly induced phosphorylation of IRS-1 and Akt in NYGGF4-overexpressing adipocytes. This study demonstrates that NYGGF4 plays a role in IR by impairing mitochondrial function, and that overexpression of TFAM can restore mitochondrial function to normal levels in NYGGF4-overexpressing adipocytes via activation of the IRS-1/PI3K/Akt signaling pathway.


Assuntos
Adipócitos/metabolismo , Adipócitos/patologia , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Resistência à Insulina , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Fatores de Transcrição/genética , Células 3T3-L1 , Trifosfato de Adenosina/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tamanho Mitocondrial/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
8.
Mitochondrion ; 12(6): 600-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23085536

RESUMO

NYGGF4 is a recently identified gene that is involved in obesity-associated insulin resistance. Previous data from this laboratory have demonstrated that NYGGF4 overexpression might contribute to the development of insulin resistance (IR) and to mitochondrial dysfunction. Additionally, NYGGF4 knockdown enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We designed this study to determine whether silencing of NYGGF4 in 3T3-L1 adipocytes could rescue the effect of insulin sensitivity and mitochondrial function induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to ascertain further the mechanism of NYGGF4 involvement in obesity-associated insulin resistance. We found that 3T3-L1 adipocytes, incubated with 5µM FCCP for 12h, had decreased levels of insulin-stimulated glucose uptake and had impaired insulin-stimulated GLUT4 translocation. Silencing also diminished insulin-stimulated tyrosinephosphorylation of IRS-1 and serine phosphorylation of Akt. This phenomenon contrasts with the effect of NYGGF4 knockdown on insulin sensitivity and describes the regulatory function of NYGGF4 in adipocytes insulin sensitivity. We next analyzed the mitochondrial function in NYGGF4-silenced adipocytes incubated with FCCP. NYGGF4 knockdown partly rescued the dissipation of mitochondrial mass, mitochondrial DNA, intracellular ATP synthesis, and intracellular reactive oxygen species (ROS) production occurred following the addition of FCCP, as well as inhibition of mitochondrial transmembrane potential (ΔΨm) in 3T3-L1 adipocytes incubated with FCCP. Collectively, our results suggested that addition of silencing NYGGF4 partly rescued the effect of insulin resistance and mitochondrial dysfunction in NYGGF4 silenced 3T3-L1 adipocytes incubated with FCCP, which might explain the involvement of NYGGF4-induced IR and the development of NYGGF4 in mitochondrial function.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/toxicidade , Proteínas de Transporte/metabolismo , Técnicas de Silenciamento de Genes , Resistência à Insulina , Animais , Proteínas de Transporte/genética , Células Cultivadas , Camundongos , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA