Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosci Trends ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972749

RESUMO

Coronary artery calcification (CAC) is an early marker for atherosclerosis and is mainly induced by the osteoblast-like phenotype conversion of vascular smooth muscle cells (VSMCs). Recent reports indicate that NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis plays a significant role in the calcification of vascular smooth muscle cells (VSMCs), making it a promising target for treating calcific aortic valve disease (CAC). Ligustrazine, or tetramethylpyrazine (TMP), has been found effective in various cardiovascular and cerebrovascular diseases and is suggested to inhibit NLRP3-mediated pyroptosis. However, the function of TMP in CAC is unknown. Herein, influences of TMP on ß-glycerophosphate (ß-GP)-stimulated VSMCs and OPG-/- mice were explored. Mouse Aortic Vascular Smooth Muscle (MOVAS-1) cells were stimulated by ß-GP with si- caspase-3, si- Gasdermin E (GSDME) or TMP. Increased calcification, reactive oxygen species (ROS) level, Interleukin-1beta (IL-1ß) and Interleukin-18 (IL-18) levels, lactate dehydrogenase (LDH) release, enhanced apoptosis, and activated cysteine-aspartic acid protease-3 (caspase-3)/GSDME signaling were observed in ß-GP-stimulated MOVAS-1 cells, which was sharply alleviated by si-caspase-3, si-GSDME or TMP. Furthermore, the impact of TMP on the ß-GP-induced calcification and injury in MOVAS-1 cells was abolished by raptinal, an activator of caspase-3. Subsequently, OPG-/- mice were dosed with TMP or TMP combined with raptinal. Calcium deposition, increased nodules, elevated IL-1ß and IL-18 levels, upregulated CASP3 and actin alpha 2, smooth muscle (ACTA2), and activated caspase-3/GSDME signaling in OPG-/- mice were markedly alleviated by TMP, which were notably reversed by the co-administration of raptinal. Collectively, TMP mitigated CAC by inhibiting caspase-3/GSDME mediated pyroptosis.

2.
Cardiovasc Diabetol ; 23(1): 79, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402392

RESUMO

BACKGROUND: Insulin resistance (IR) is associated with coronary artery disease (CAD) severity. However, its underlying mechanisms are not fully understood. Therefore, our study aimed to explore the relationship between IR and coronary inflammation and investigate the synergistic and mediating effects of coronary inflammation on the association between IR and CAD severity. METHODS: Consecutive patients with CAD who underwent coronary angiography and coronary computed tomography angiography between April 2018 and March 2023 were enrolled. The triglyceride-glucose index (TyG index) and peri-coronary adipose tissue (PCAT) attenuation around the proximal right coronary artery (RCA) were used to evaluate IR and coronary inflammation, respectively. The correlation between the TyG index and PCAT attenuation was analyzed using linear regression models. Logistic regression models were further used for investigating the correlation of the TyG index and PCAT attenuation with CAD severity. A mediation analysis assessed the correlation between IR and CAD severity mediated by coronary inflammation. RESULTS: A total of 569 participants (mean age, 62 ± 11 years; 67.8% men) were included in the study. PCAT attenuation was positively associated with the TyG index (r = 0.166; P < 0.001). After adjusting for potential confounders, the per standard deviation increment in the TyG index was associated with a 1.791 Hounsfield unit (HU) increase (95% confidence interval [CI], 0.920-2.662 HU; P < 0.001) in the PCAT attenuation. In total, 382 (67.1%) patients had multivessel CAD. The patients in the high-TyG index/high PCAT attenuation group had approximately 3.2 times the odds of multivessel CAD compared with those in the low-TyG index/low PCAT attenuation group (odds ratio, 3.199; 95%CI, 1.826-5.607; P < 0.001). Mediation analysis indicated that PCAT attenuation mediated 31.66% of the correlation between the TyG index and multivessel CAD. CONCLUSIONS: The TyG index positively correlated with PCAT attenuation in patients with CAD. The TyG index and PCAT attenuation showed a synergistic correlation with multivessel CAD. Furthermore, PCAT attenuation partially mediated the relationship between the TyG index and CAD severity. Controlling inflammation in patients with high IR and coronary inflammation may provide additional benefits.


Assuntos
Doença da Artéria Coronariana , Resistência à Insulina , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Doença da Artéria Coronariana/diagnóstico por imagem , Estudos Transversais , Angiografia Coronária/métodos , Glucose , Arritmias Cardíacas , Inflamação/diagnóstico por imagem
3.
Int Immunopharmacol ; 127: 111454, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159554

RESUMO

Coronary artery calcification (CAC) is commonly observed in atherosclerotic plaques, which is a pathogenic factor for severe coronary artery disease (CAD). The phenotype changes of vascular smooth muscle cells (VSMCs) are found to participate in CAC progression, which is mainly induced by vascular inflammation and oxidative stress (OS). HMGB1, a critical inflammatory cytokine, is recently reported to induce arterial calcification, which is regulated by the Caspase-3/gasdermin-E (GSDME) axis. However, the function of the Caspase-3/GSDME axis in CAC is unknown. Herein, the involvement of the Caspase-3/GSDME axis in CAC was studied to explore the possible targets for CAC. CAC model was constructed in mice, which was verified by red cytoplasm in coronary artery tissues, increased macrophage infiltration, aggravated inflammation, and enhanced RAGE signaling, accompanied by an increased release of HMGB1 and an activated Caspase-3/ GSDME axis. In ß-GP-treated MOVAS-1 cells, calcification, the ROS accumulation, enhanced LDH and HMGB1 release, enlarged macrophage production, aggravated inflammation, and activated RAGE signaling were observed, which were markedly abolished by the transfection of si-HMGB1 and si-GSDME. Moreover, the calcification deposition, the activity of Caspase-3/ GSDME axis, release of HMGB1, macrophage infiltration, cytokine production, and RAGE signaling in CAC mice were notably alleviated by VSMCs-specific GSDME knockdown, not by hematopoietic stem cells (HSCs)-specific GSDME knockdown. Collectively, Caspase-3/GSDME axis facilitated the progression of CAC by inducing the release of HMGB1.


Assuntos
Doença da Artéria Coronariana , Proteína HMGB1 , Animais , Camundongos , Piroptose , Gasderminas , Caspase 3/metabolismo , Proteína HMGB1/metabolismo , Citocinas/metabolismo , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA