Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chem Biol Interact ; 405: 111288, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39454710

RESUMO

Benzo(a)pyrene (BaP), a pervasive environmental pollutant with endocrine-disrupting properties, has been associated with detrimental effects on pregnancy. During early pregnancy, the endometrial decidualization process is critical for embryo implantation. Abnormal decidualization can lead to implantation failure, aberrant placental formation, and pregnancy loss. We previously revealed that BaP exposure impaired decidualization and implantation in mice, yet the underlying mechanisms remained elusive. Autophagy, a cellular mechanism pivotal for energy and material recycling, contributes to the decidualization process. The chemokine C-X-C motif chemokine ligand 12 (CXCL12), secreted by endometrium stromal cells (ESCs), is involved in regulating endometrial decidualization and autophagy. Therefore, this study aimed to explore the hypothesis that BaP disrupts the decidualization process by interfering with autophagic pathways via the CXCL12/CXCR4 axis during early pregnancy. We found that BaP inhibited CXCL12/CXCR4 expression, and induced autophagy by promoting autophagosome formation, which in turn impaired the decidualization in early pregnant mice uterus and decidual stromal cells (DSCs). Using autophagy inhibitors 3-methyladenine and chloroquine in combination with BaP to treat DSCs, successfully weakened BaP-induced autophagy, and relieved decidual injury. Additionally, activation of CXCL12/CXCR4 by recombinant protein CXCL12 attenuated BaP-induced autophagy, inhibited the PI3K/AKT signal activation caused by BaP, and partly rescued the expression of decidualization-related genes. In summary, this study demonstrates that BaP induces autophagy in DSCs by inhibiting the CXCL12/CXCR4 axis, leading to damage in endometrial decidualization during early pregnancy. The findings provide a critical chemokine-mediated regulatory mechanism involved in embryo implantation and contribute valuable knowledge to the reproductive toxicology of BaP.

2.
Environ Res ; 252(Pt 1): 118865, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583661

RESUMO

Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.


Assuntos
Apoptose , Benzo(a)pireno , Células da Granulosa , NF-kappa B , Fator 2 Associado a Receptor de TNF , Feminino , Animais , Apoptose/efeitos dos fármacos , Camundongos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , NF-kappa B/metabolismo , Gravidez , Benzo(a)pireno/toxicidade , Fator 2 Associado a Receptor de TNF/metabolismo , Caspase 1/metabolismo , Disruptores Endócrinos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Humanos
3.
Ecotoxicol Environ Saf ; 251: 114531, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641866

RESUMO

The environmental pollutant Benzo(a)pyrene (BaP) has an adverse effect on the reproductive performance of mammals. We previously showed that BaP treatment during early pregnancy damages endometrial morphology and impairs embryo implantation. Endometrial decidualization at the implantation site (IS) after embryo implantation is crucial for pregnancy maintenance and placental development. The balance between proliferation and differentiation in endometrial stromal cells (ESCs) is a crucial event of decidualization, which is regulated by the cell cycle. Here, we report that abnormal decidualization caused by BaP is associated with cell cycle disturbance of stromal cells. The mice in the treatment group were gavaged with 0.2 mg/kg/day BaP from day 1-8 of pregnancy, while those in control were gavaged with corn oil in parallel. BaP damaged the decidualization of ESCs and reduced the number of polyploid cells. Meanwhile, BaP up-regulated the expression of Ki67 and PCNA, affecting the differentiation of stromal cells. The cell cycle progression analysis during decidualization in vivo and in vitro showed that BaP induced polyploid cells deficiency with enhanced expressions of CyclinA(E)/CDK2, CyclinD/CDK4 and CyclinB/CDK1, which promote the transformation of cells from G1 to S phase and simultaneously activate the G2/M phase. The above results indicated that BaP exposure accelerates cell cycle progression, promotes ESC proliferation, inhibits differentiation, and impedes proper decidualization and polyploidy development. Thus, the imbalance of ESC proliferation and differentiation would be an important mechanism for BaP-induced defective decidualization.


Assuntos
Benzo(a)pireno , Decídua , Gravidez , Camundongos , Feminino , Animais , Decídua/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Placenta , Diferenciação Celular , Proliferação de Células , Células Estromais/metabolismo , Poliploidia , Mamíferos
4.
Chem Biol Interact ; 365: 110085, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940284

RESUMO

Benzo(a)pyrene (BaP) is a well-known environmental endocrine pollutant, which has ovarian toxicity in mammals. Ovarian corpus luteum (CL), as the main source of progesterone synthesis in early pregnant female, requires a large number of mitochondria for energy supply. We previously demonstrated that BaP and its metabolite benzo(a)pyren-7, 8-dihydrodiol-9, 10-epoxide (BPDE) inhibited the ovarian melatonin receptors (MTRs) expression and decreased the levels of estrogen and progesterone during early pregnancy in mice. Emerging researches show that MTRs also exist on mitochondrial membrane and participate in the regulation of mitochondrial function. However, the relationship between BaP, MTRs on mitochondrial membrane and mitochondrial function remains unknown. Consequently, this study focuses on the effect and potential mechanism of BaP on ovarian luteal mitochondrial function during early pregnancy. We found that BaP and its metabolite BPDE decreased MTRs in early pregnant CL and luteinized KGN cells, especially in mitochondria. Furthermore, BaP or BPDE up-regulated the expression of SIRT3, Mfn2 and Drp-1, damaged mitochondrial morphology and decreased the MMP and the ATP levels, thereby causing mitochondrial dysfunction. Notably, activation of the MTRs on mitochondrial membrane by MTRs agonist ramelteon partially alleviated BPDE-induced up-regulation of SIRT3, Mfn2 and Drp-1, reduced mitochondrial fragmentation and enhanced the MMP and the ATP levels, thus restoring the expression of steroid rate-limiting enzymes. Together, these findings firstly proved that BaP and BPDE down-regulate MTRs on mitochondrial membrane, and further injure mitochondrial function in early pregnant rats' CL, which provides a new insight for understanding the exact mechanism of the BaP-induced ovarian toxicity.


Assuntos
Poluentes Ambientais , Sirtuína 3 , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Benzo(a)pireno/farmacologia , Corpo Lúteo/metabolismo , Poluentes Ambientais/metabolismo , Feminino , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Gravidez , Progesterona/metabolismo , Ratos , Receptores de Melatonina/metabolismo , Sirtuína 3/metabolismo
5.
Sci Total Environ ; 814: 152759, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986425

RESUMO

Exposure to benzo (a)pyrene (BaP) has been confirmed to interfere with embryo implantation. As the primary organ of progesterone synthesis during early pregnancy, the ovarian corpus luteum (CL) is essential for embryo implantation and pregnancy maintenance. We previously demonstrated that BaP impaired luteal function, but the molecular mechanism remains unclear. In CL cells, mitochondria are the main sites of progesterone synthesis. Mitophagy, a particular type of autophagy, regulates mitochondrial quality by degrading damaged mitochondria and ensuring the homeostasis of cell physiology. Therefore, the present study investigated the effects and the potential molecular mechanisms of BaP on ovarian mitophagy during early pregnancy. We found that BaP and its metabolite, BPDE, inhibited autophagy and PINK1/Parkin-mediated mitophagy in the pregnant ovaries and luteinized granulosa cell, KGN. Notably, adenine nucleotide translocator 1 (ANT1), a crucial mediator of PINK1-dependent mitophagy, was suppressed by BaP and BPDE both in vivo and in vitro. The inhibition of ANT1 leads to the decrease in the PINK1 bound to the outer membrane of mitochondria and consequently reduces recruitment of Parkin to the mitochondria, which is required for the subsequent clearance of mitochondria. Meanwhile, exposure to BPDE also damaged mitochondrial function, causing the reduction in mitochondrial potential and ATP production. Overexpression of ANT1 in KGN cells partially relieved the inhibition of mitophagy caused by BPDE, restored mitochondrial function and expression of hormone synthesis-associated genes. Collectively, our study firstly clarified that BaP and BPDE suppress mitophagy of CL cells via the ANT1-PINK1-Parkin pathway, which provides a new insight to explore the detailed mechanism of the BaP-induced ovarian toxicity.


Assuntos
Benzo(a)pireno , Mitofagia , Translocador 1 do Nucleotídeo Adenina , Benzo(a)pireno/toxicidade , Corpo Lúteo/metabolismo , Feminino , Humanos , Ovário , Gravidez , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
BMC Complement Med Ther ; 21(1): 33, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446171

RESUMO

BACKGROUND: Microcirculatory disturbance is closely associated with multiple diseases such as ischemic and septic stroke. Luteolin (3,4,5,7-tetrahydroxyflavone) is a vascular protective flavonoid present in several dietary foods. However, how luteolin plays a role in microcirculatory disturbance is still unknown. The purpose of this study was to find out the influence of luteolin on the lipopolysaccharide (LPS)-induced microcirculatory disturbance, focusing on its effect on leukocyte adhesion and the underlying mechanism of this effect. METHODS: After injecting LPS into rats, we used an inverted intravital microscope to observe the velocity of red blood cells in venules, numbers of leukocytes adherent to and emigrated across the venular wall, hydrogen peroxide production in venular walls and mast cell degranulation. Intestinal microcirculation blood flow was measured by High-resolution Laser Doppler Perfusion Imaging. Histological changes of small intestine and mesenteric arteries were evaluated. Additionally, cell adhesion stimulated by LPS was tested on EA.hy926 and THP-1 cells. The production of pro-inflammatory cytokines, adhesion molecules and the activation of TLR4/Myd88/NF-κB signaling pathway were determined. RESULTS: The results showed luteolin significantly inhibited LPS-induced leukocyte adhesion, hydrogen peroxide production and mast cell degranulation, and increased intestinal microcirculation blood flow and ameliorated pathological changes in the mesenteric artery and the small intestine. Furthermore, luteolin inhibited the release of pro-inflammatory cytokines, the expression of TLR4, Myd88, ICAM-1, and VCAM-1, the phosphorylation of IκB-α and NF-κB/p65 in LPS stimulated EA.hy926. CONCLUSIONS: Our findings revealed that it is likely that luteolin can ameliorate microcirculatory disturbance. The inhibitory effects of luteolin on the leukocyte adhesion stimulated by LPS, which participates in the development of microcirculatory disturbance, are mediated through the regulation of the TLR4/Myd88/NF-κB signaling pathway.


Assuntos
Adesão Celular/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Luteolina/farmacologia , Mesentério/irrigação sanguínea , Microcirculação/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Mesentério/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células THP-1
7.
Ecotoxicol Environ Saf ; 207: 111561, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254415

RESUMO

Benzo(a)pyrene (B(a)P) is a widespread persistent organic pollutant (POP) and a well-known endocrine disruptor. Exposure to BaP is known to disrupt the steroid balance and impair embryo implantation, but the mechanism under it remains unclear. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. Therefore, this study was conducted to assess the effects and potential mechanisms of B(a)P on the CL function. Our results showed that pregnant mice received B(a)P displayed impaired embryo implantation and dysfunction of ovarian CL. The estrogen and progesterone levels decreased by B(a)P. In vitro, exposure to BPDE, which is the metabolite of B(a)P, affected the luteinization of granular cell KK-1. Additionally, melatonin and its receptors, which are important for ovarian function and anti-oxidative damage, were affected by B(a)P or BPDE. B(a)P or BPDE-treated alone impaired antioxidant capacity of ovarian granulosa cells, caused an increasing of ROS and cell apoptosis, and disrupted the PI3K/AKT/GSK3ß signaling pathway in vivo and in vitro. Co-treatment with melatonin alleviated B(a)P or BPDE-induced CL dysfunction by ameliorating oxidative stress, counteracting phosphorylation of PI3K/AKT/GSK3ß signaling pathway, decreasing the apoptosis of the ovarian cells. Moreover, activation of the melatonin receptor by ramelteon in KK-1 cells exhibits an analogous protective effect as melatonin. In conclusion, our findings not only firstly clarify the potential mechanisms of BaP-induced CL dysfunction, but also extend the understanding about the ovarian protection of melatonin and its receptors against B(a)P exposure.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Corpo Lúteo/fisiologia , Melatonina/farmacologia , Animais , Antioxidantes/metabolismo , Benzo(a)pireno/metabolismo , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Disruptores Endócrinos/metabolismo , Feminino , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Progesterona/metabolismo
8.
Environ Pollut ; 259: 113915, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023792

RESUMO

Benzo [a]pyrene (BaP) is a well-known endocrine disruptor. Exposure to BaP is known to impair embryo implantation. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. However, the effect of BaP on CL remains unknown. This study investigated the deleterious effects of BaP on the structure and function of CL during early pregnancy. Pregnant rats were dosed with BaP at 0.2 mg.kg-1. d from day 1 (D1) to day 9 (D9) of gestation. We found that BaP reduced the number of CLs, disturbed the secretion of steroid and impacted the luteal vascular networks. BaP significantly decreased the angiogenesis factor (VEGFR, Ang-1 and Tie2) and increased the anti-angiogenic factor THBS1. Inhibited THBS1 function by LSKL partially rescued the angiogenesis defect caused by BaP. In vitro, BaP metabolite BPDE also interfered the expression levels of angiogenesis-related factors in HUVECs and impaired the angiogenesis, whereas supplemented with rAng-1 can alleviate the anti-angiogenic effect of BPDE. Furthermore, Notch signaling molecules, including Notch1, Dll4, Jag1 and Hey2, which are essential for the establishment and maturation of vascular networks, were affected by BaP exposure. Collectively, BaP broke the molecular regulatory balance between luteal angiogenesis and vascular maturation, impaired the construction of luteal vascular networks, and further affected luteal formation and endocrine function during early pregnancy. Our findings might provide new insight into the relationship between BaP and luteal insufficiency in early pregnancy. These data also give a new line of evidence for curtailing BaP emissions and protecting the women of childbearing age from occupational exposure.


Assuntos
Benzo(a)pireno/toxicidade , Corpo Lúteo/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Animais , Corpo Lúteo/fisiologia , Implantação do Embrião , Disruptores Endócrinos/toxicidade , Feminino , Gravidez , Progesterona , Ratos
9.
J Cell Physiol ; 234(7): 11119-11129, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30443902

RESUMO

Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg-1 ·day -1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and ß-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and ß-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/ß-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)pireno/farmacologia , Endométrio/citologia , Células Estromais/efeitos dos fármacos , Proteína Wnt-5a/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Gravidez , Células Estromais/metabolismo , Proteína Wnt-5a/genética
10.
Mol Neurobiol ; 55(10): 8059-8070, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29498008

RESUMO

The central histaminergic nervous system, originating from the tuberomammillary nucleus (TMN) of the hypothalamus, widely innervates almost the whole brain, including the basal ganglia. Intriguingly, the histaminergic system is altered in parkinsonian patients. Yet, little is known about the effect and mechanisms of histamine on different types of neurons in the basal ganglia circuitry. Here, by using anterograde tracing, immunostaining, patch clamp recording, and single-cell qPCR techniques, we investigate the histaminergic afferents in the striatum, the major input structure of the basal ganglia, as well as the effect of histamine on the striatal GABAergic medium spiny projection neurons (MSNs). We report a direct histaminergic projection from the hypothalamic TMN to the striatum in rats. Furthermore, histamine exerts a strong postsynaptic excitatory effect on both dopamine D1 and D2 receptor-expressing MSNs. The concentration-response curves and the EC50 values for histamine on these two types of MSNs are similar. In addition, dopamine D1 and D2 receptor-expressing MSNs co-express histamine H1 and H2 receptor mRNAs. Both histamine H1 and H2 receptors are co-localized on dopamine D1 and D2 receptor-expressing MSNs and co-mediate the histamine-induced excitation on the two types of neurons. These results suggest that the histaminergic afferent inputs in the striatum may modulate both dopamine D1 and D2 receptor-expressing MSNs by activation of postsynaptic histamine H1 and H2 receptors and thus serve as an important extrastriatal modulator for biasing the direct and indirect pathways to actively regulate functions of the basal ganglia and participate in the pathogenesis and pathophysiology of basal ganglia diseases.


Assuntos
Histamina/farmacologia , Neostriado/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores Histamínicos H1/genética , Receptores Histamínicos H2/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
11.
Sci Rep ; 6: 37549, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869224

RESUMO

Amphioxus is a closest living proxy to the ancestor of cephalochordates with vertebrates, and key animal for novel understanding in the evolutionary origin of vertebrate body plan, genome, tissues and immune system. Reliable analyses using quantitative real-time PCR (qRT-PCR) for answering these scientific questions is heavily dependent on reliable reference genes (RGs). In this study, we evaluated stability of thirteen candidate RGs in qRT-PCR for different developmental stages and tissues of amphioxus by four independent (geNorm, NormFinder, BestKeeper and deltaCt) and one comparative algorithms (RefFinder). The results showed that the top two stable RGs were the following: (1) S20 and 18 S in thirteen developmental stages, (2) EF1A and ACT in seven normal tissues, (3) S20 and L13 in both intestine and hepatic caecum challenged with lipopolysaccharide (LPS), and (4) S20 and EF1A in gill challenged with LPS. The expression profiles of two target genes (EYA and HHEX) in thirteen developmental stages were used to confirm the reliability of chosen RGs. This study identified optimal RGs that can be used to accurately measure gene expression under these conditions, which will benefit evolutionary and functional genomics studies in amphioxus.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/embriologia , Anfioxos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Algoritmos , Animais , Primers do DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Padrões de Referência , Reprodutibilidade dos Testes , Software
12.
Oncol Lett ; 10(2): 754-760, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26622565

RESUMO

It was originally thought that no single routine blood test result would be able to indicate whether or not a patient had cancer; however, several novel studies have indicated that the median survival and prognosis of cancer patients were markedly associated with the systemic circulation features of cancer patients. In addition, certain parameters, such as white blood cell (WBC) count, were largely altered in malignant tumors. In the present study, routine blood tests were performed in order to observe the change of blood cells in tumor-bearing mice following the implantation of 4T1 breast cancer cells into the mammary fat pad; in addition, blood flow in breast tumor sites was measured indirectly using laser Doppler perfusion imaging (LDPI), in an attempt to explain the relevance between the blood circulation features and the growth or metastasis of breast cancer in mice model. The LDPI and blood test results indicated that the implantation of 4T1 breast cancer cells into BALB/c mice led to thrombosis as well as high WBC count, high platelet count, high plateletcrit and low blood perfusion. Following implantation of the 4T1 cells for four weeks, the lung metastatic number was determined and the Pearson correlation coefficient revealed that the number of visceral lung metastatic sites had a marked negative association with the ratio of basophils (BASO%; r=-0.512; P<0.01) and the mean corpuscular hemoglobin was significantly correlated with primary tumor weight (r=0.425; P<0.05). In conclusion, the results of the present study demonstrated that tumor growth led to thrombosis and acute anemia in mice; in addition, when blood BASO% was low, an increased number of lung metastases were observed in tumor-bearing mice.

13.
Artigo em Inglês | MEDLINE | ID: mdl-26495010

RESUMO

Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs) and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II-) induced proliferation and migration of vascular smooth muscle cells (VSMCs). Dichlorofluorescein diacetate (DCFH-DA) staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA) protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA