Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Fish Shellfish Immunol ; 151: 109700, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876409

RESUMO

The impact of environmental factors on the health of the endangered Chinese sturgeon (Acipenser sinensis) and the potential hazards associated with sample collection for health monitoring pose urgent need to its conservation. In this study, Chinese sturgeons were selected from indoor and outdoor environments to evaluate metabolic and tissue damage indicators, along with a non-specific immune enzyme in fish mucus. Additionally, the microbiota of both water bodies and fish mucus were determined using 16S rRNA high-throughput sequencing. The correlation between the indicators and the microbiota was investigated, along with the measurement of multiple environmental factors. The results revealed significantly higher levels of two metabolic indicators, total protein (TP) and cortisol (COR) in indoor fish mucus compared to outdoor fish mucus (p < 0.05). The activities of acid phosphatase (ACP), alkaline phosphatase (ALP), creatine kinase (CK), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were significantly higher in indoor fish, serving as indicators of tissue damage (p < 0.05). The activity of lysozyme (LZM) was significantly lower in indoor fish (p < 0.01). Biomarker analysis at the phylum and genus levels in outdoor samples revealed that microorganisms were primarily related to the catabolism of organic nutrients. In indoor environments, microorganisms displayed a broader spectrum of functions, including ecological niche establishment, host colonization, potential pathogenicity, and antagonism of pathogens. KEGG functional enrichment corroborated these findings. Dissolved oxygen (DO), electrical conductivity (EC), ammonia nitrogen (NH3-N), turbidity (TU), and chemical oxygen demand (COD) exerted effects on outdoor microbiota. Temperature (TEMP), nitrate (NO3-), total phosphorus (TP), and total nitrogen (TN) influenced indoor microbiota. Changes in mucus indicators, microbial structure, and function in both environments were highly correlated with these factors. Our study provides novel insights into the health impacts of different environments on Chinese sturgeon using a non-invasive method.

2.
J Oral Microbiol ; 16(1): 2365965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910869

RESUMO

Background: Healthcare settings may amplify transmission of respiratory pathogens, however empirical evidence is lacking. We aimed to describe the spectrum and distribution of respiratory pathogens among healthcare workers in eastern China. Methods: Healthcare workers were recruited from October 2020 to November 2021 in Jiangsu province. Participants were interviewed regarding demographic and hospital-based protective measures. Thirty-seven common respiratory pathogens were tested using real-time PCR/RT-PCR (Probe qPCR). The role of demographic and hospital-based protective measures on pathogens colonization using multivariable logistic regression models. Results: Among 316 enrolled healthcare workers, a total of 21 pathogens were detected. In total, 212 (67.1%) healthcare workers had at least one respiratory pathogen; 195 (61.7%) and 70 (22.2%) with a bacterial and viral pathogen. The most commonly detected pathogen was streptococcus pneumoniae (47.5%) followed by Haemophilus influenzae (21.2%). One hundred and five (33.2%) healthcare workers with copathogens had at least two respiratory pathogens. Both bacterial and viral colonization were more common in 2020 compared to 2021. A decreased risk of colonization was seen in participants with infection prevention and control training and suitable hand hygiene. Conclusions: Colonization of respiratory pathogens in healthcare workers from eastern China was high. Differential risk was impacted only by hospital-based protective measures and not demographic factors.

3.
Anal Chem ; 96(25): 10356-10364, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38863415

RESUMO

Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) has proven to be an efficient technique for the separation and detection of charged inorganic, organic, and biochemical analytes. It offers several advantages, including cost-effectiveness, nanoliter injection volume, short analysis time, good separation efficiency, suitability for miniaturization, and portability. However, the routine determination of common inorganic cations (NH4+, K+, Na+, Ca2+, Mg2+, and Li+) and inorganic anions (F-, Cl-, Br-, NO2-, NO3-, PO43-, and SO42-) in water quality monitoring typically exhibits limits of detection of about 0.3-1 µM without preconcentration. This sensitivity often proves insufficient for the applications of CE-C4D in trace analysis situations. Here, we explore methods to push the detection limits of CE-C4D through a comprehensive consideration of signal and noise sources. In particular, we (i) studied the model of C4D and its guiding roles in C4D and CE-C4D, (ii) optimized the bandwidth and noise performance of the current-to-voltage (I-V) converter, and (iii) reduced the noise level due to the strong background signal of the background electrolyte by adaptive differential detection. We characterized the system with Li+; the 3-fold signal-to-noise (S/N) detection limit for Li+ was determined at 20 nM, with a linear range spanning from 60 nM to 1.6 mM. Moreover, the optimized CE-C4D method was applied to the analysis of common mixed inorganic cations (K+, Na+, Ca2+, Mg2+, and Li+), anions (F-, Cl-, Br-, NO2-, NO3-, PO43-, and SO42-), toxic halides (BrO3-) and heavy metal ions (Pb2+, Cd2+, Cr3+, Co2+, Ni2+, Zn2+, and Cu2+) at trace concentrations of 200 nM. All electropherograms showed good S/N ratios, thus proving its applicability and accuracy. Our results have shown that the developed CE-C4D method is feasible for trace ion analysis in water quality control.

4.
PLoS One ; 19(5): e0304137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805487

RESUMO

This study aims to evaluate the role of the peri-coronary Fat Attenuation Index (FAI) and High-Risk Plaque Characteristics (HRPC) in the assessment of coronary heart disease risk. By conducting coronary CT angiography and coronary angiography on 217 patients with newly developed chest pain (excluding acute myocardial infarction), their degree of vascular stenosis, FAI, and the presence and quantity of HRPC were assessed. The study results demonstrate a correlation between FAI and HRPC, and the combined use of FAI and HRPC can more accurately predict the risk of major adverse cardiovascular events (MACE). Additionally, the study found that patients with high FAI were more prone to exhibit high-risk plaque characteristics, severe stenosis, and multiple vessel disease. After adjustment, the combination of FAI and HRPC improved the ability to identify and reclassify MACE. Furthermore, the study identified high FAI as an independent predictor of MACE in patients undergoing revascularization, while HRPC served as an independent predictor of MACE in patients not undergoing revascularization. These findings suggest the potential clinical value of FAI and HRPC in the assessment of coronary heart disease risk, particularly in patients with newly developed chest pain excluding acute myocardial infarction.


Assuntos
Dor no Peito , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Placa Aterosclerótica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Angiografia por Tomografia Computadorizada/métodos , Dor no Peito/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/complicações , Angiografia Coronária/métodos , Idoso , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/complicações , Medição de Risco , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/complicações , Fatores de Risco , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia
5.
Aquat Toxicol ; 272: 106943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733942

RESUMO

The Chinese sturgeon (Acipenser sinensis) is an endangered freshwater mega-fish (IUCN-red listed) that survives in the Yangtze River Basin, but the population of which has declined significantly in response to environmental pressures generated by human activities. In order to evaluate the interaction between Chinese sturgeon and microplastics (MPs) for the first time, we examined the gut and gills of historical samples (n = 27), in conjunction with the blood and mucus of live samples (n = 10), to explore the potential pathways involved in MP uptake. We detected MPs in 62.9 % of the field fish, with no significant difference between guts (mean=0.9 items/individual) and gills (mean=0.8 items/individual). The abundance of MPs in fish from 2017 was significantly higher than that from 2015 to 2016 with regards to both gills and gut samples. The size of MPs in gills was significantly smaller than those in guts, yet both contained mostly fibers (90.2 %). No MPs were confirmed in blood, however 62.5 % of mucus samples contained MPs. The MPs in mucus indicated the possibility of MPs entering Chinese sturgeons if their skins were damaged. The body size of Chinese sturgeons affected their MPs uptake by ingestion and inhalation, as less MPs were detected in the gut and gills of smaller individuals. Combining the evidence from historical and live samples, we revealed the presence of MPs in different tissues of Chinese sturgeon and their potential relevance to exposure pathways. Our work expands the understanding of multiple exposure pathways between MPs and long-lived mega-fish, while emphasizing the potential risks of long-term exposure in the field.


Assuntos
Espécies em Perigo de Extinção , Peixes , Brânquias , Microplásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Peixes/metabolismo , Brânquias/metabolismo , Brânquias/química , Monitoramento Ambiental , Exposição Ambiental , Muco , China
6.
Fish Shellfish Immunol ; 149: 109527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561068

RESUMO

Skin mucus analysis has recently been used as a non-invasive method to evaluate for fish welfare. The present research study was conducted to examine the skin mucosal immunity and skin microbiota profiles of sturgeons infected with Citrobacter freundii. Our histology results showed that the thickness of the epidermal layer of skin remained thinner, and the number of mucous cells was significantly decreased in sturgeons after infection (p < 0.05). Total protein, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and creatine kinase levels in the mucus showed biphasic pattern (decrease and then increase). Lactate dehydrogenase, lysozyme, and acid phosphatase activities in the mucus showed an increasing trend after infection. Furthermore, 16S rRNA sequencing also revealed that C. freundii infection also affected the diversity and community structure of the skin mucus microbiota. An increase in microbial diversity (p > 0.05) and a decrease in microbial abundance (p < 0.05) after infection were noted. The predominant bacterial phyla in the skin mucus were Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Specifically, the relative abundance of Fusobacteria increased after infection. The predominant bacterial genera in the skin mucus were Cetobacterium, Pelomonas, Bradyrhizobium, Flavobacterium, and Pseudomonas. The relative abundance of Cetobacterium, Pseudomonas, and Flavobacterium increased after infection. Our current research findings will provide new insights into the theoretical basis for future research studies exploring the mechanism of sturgeon infection with C. freundii.


Assuntos
Citrobacter freundii , Infecções por Enterobacteriaceae , Doenças dos Peixes , Peixes , Imunidade nas Mucosas , Microbiota , Pele , Animais , Citrobacter freundii/imunologia , Microbiota/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Pele/imunologia , Pele/microbiologia , Peixes/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Muco/imunologia , Muco/microbiologia , RNA Ribossômico 16S/genética
7.
Angew Chem Int Ed Engl ; 63(23): e202404663, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575553

RESUMO

The intrinsic activity assessment of transition metal oxides (TMOs) as key electrocatalysts for the oxygen evolution reaction (OER) has not been standardized due to uncertainties regarding their structure and composition, difficulties in accurately measuring their electrochemically active surface area (ECSA), and deficiencies in mass-transfer (MT) rates in conventional measurements. To address these issues, we utilized an electrodeposition-thermal annealing method to precisely synthesize single-particle TMOs with well-defined structure and composition. Concurrently, we engineered low roughness, spherical surfaces for individual particles, enabling precise measurement of their ECSA. Furthermore, by constructing a conductor-core semiconductor-shell structure, we evaluated the inherent OER activity of perovskite-type semiconductor materials, broadening the scope beyond just conductive TMOs. Finally, using single-particle nanoelectrode technique, we systematically measured individual TMO particles of various sizes for OER, overcoming MT limitations seen in conventional approaches. These improvements have led us to propose a precise and reliable approach to evaluating the intrinsic activity of TMOs, not only validating the accuracy of theoretical calculations but also revealing a strong correlation of OER activity on the melting point of TMOs. This discovery holds significant importance for future high-throughput material research and applications, offering valuable insights in electrocatalysis.

8.
Am J Clin Oncol ; 47(6): 291-303, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375734

RESUMO

With the global incidence of non-small cell lung cancer (NSCLC) on the rise, the development of innovative treatment strategies is increasingly vital. This review underscores the pivotal role of precision medicine in transforming NSCLC management, particularly through the integration of genomic and epigenomic insights to enhance treatment outcomes for patients. We focus on the identification of key gene mutations and examine the evolution and impact of targeted therapies. These therapies have shown encouraging results in improving survival rates and quality of life. Despite numerous gene mutations being identified in association with NSCLC, targeted treatments are available for only a select few. This paper offers an exhaustive analysis of the pathogenesis of NSCLC and reviews the latest advancements in targeted therapeutic approaches. It emphasizes the ongoing necessity for research and development in this domain. In addition, we discuss the current challenges faced in the clinical application of these therapies and the potential directions for future research, including the identification of novel targets and the development of new treatment modalities.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia de Alvo Molecular , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular/métodos , Medicina de Precisão , Mutação
9.
J Fish Biol ; 104(4): 1180-1192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38254334

RESUMO

The Chinese sturgeon (Acipenser sinensis) is a critically endangered aquatic fish. Health monitoring and welfare assessments are critical for the conservation of Chinese sturgeon. In this study, biochemical parameters of serum and skin mucus in Chinese sturgeon were examined to evaluate the potential biomarkers. Serum and mucous samples were obtained from Chinese sturgeon, and the levels of total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine kinase (CK), lactic acid (LD), acid phosphatase (ACP), lysozyme (LYZ), glucose (GLU), and cortisol were determined. The concentrations of ALT, AST, cortisol, and LYZ were significantly higher in the mucous group than those in the serum group (p < 0.05). In addition, the concentrations of ALP, ACP, LD, LDH, CK, and TP were significantly higher level in the serum group than those in the mucous group (p < 0.05). Moreover, the correlations between serum and mucous biochemical parameters were established. Statistical analysis showed a positive correlation between serum and skin mucous markers (ACP, cortisol, and LYZ). AST versus ALT in serum and mucus showed a significant positive correlation (p < 0.01). A significant positive correlation was found between cortisol and CK in mucus (p < 0.01). Moreover, LD versus LDH in serum showed a significant but weak positive correlation (p < 0.01). Principal component analysis revealed a complete separation between the serum and mucous groups, with the biomarkers that contributed the most being ALP, TP, ALT, and AST. This study provides baseline data and reference intervals for serum and mucous biochemical parameters in presumably healthy Chinese sturgeons. The current study has important implications for the development of conservation strategies and the conservation status of critically endangered species.


Assuntos
Peixes , Hidrocortisona , Animais , Biomarcadores
10.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284812

RESUMO

Quartz tuning forks and qPlus-based force sensors offer an alternative approach to silicon cantilevers for investigating tip-sample interactions in scanning probe microscopy. The high-quality factor (Q) and stiffness of these sensors prevent the tip from jumping to the contact, even at sub-nanometer amplitude. The qPlus configuration enables simultaneous scanning tunneling microscopy and atomic force microscopy, achieving spatial resolution and spectroscopy at the subatomic level. However, to enable precise measurement of tip-sample interaction forces, confidence in these measurements is contingent upon the accurate calibration of the spring constant and oscillation amplitude of the sensor. Here, we have developed a method called astigmatic displacement microscopy with picometer sensitivity.

11.
ACS Appl Mater Interfaces ; 16(2): 2417-2427, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38171351

RESUMO

Natural ores are abundant, cost-effective, and environmentally friendly. Ultrathin (2D) layers of a naturally abundant van der Waals mineral, Biotite, have been prepared in bulk via exfoliation. We report here that this 2D Biotene material has shown extraordinary Li-Na-ion battery anode properties with ultralong cycling stability. Biotene shows 302 and 141 mAh g-1 first cycle-specific charge capacity for Li- and Na-ion battery applications with ∼90% initial Coulombic efficiency. The electrode exhibits significantly extended cycling stability with ∼75% capacity retention after 4000 cycles even at higher current densities (500-2000 mA g-1). Further, density functional theory studies show the possible Li intercalation mechanism between the 2D Biotene layers. Our work brings new directions toward designing the next generation of metal-ion battery anodes.

12.
Mar Environ Res ; 194: 106299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154196

RESUMO

Noise pollution is increasingly prevalent in aquatic ecosystems, causing detrimental effects on growth and behavior of marine fishes. The physiological responses of fish to underwater noise are poorly understood. In this study, we used RNA-sequencing (RNA-seq) to study the transcriptome of the sonic muscle in small yellow croaker (Larimichthys polyactis) after exposure to a 120 dB noise for 30 min. The behavioral experiment revealed that noise exposure resulted in accelerated tail swimming behavior at the beginning of the exposure period, followed by loss of balance at the end of experiment. Transcriptomic analysis found that most highly expressed genes in the sonic muscle, including parvalbumin, slc25a4, and troponin C were related with energy metabolism and locomotor function. Further, a total of 1261 differentially expressed genes (DEGs) were identified, including 284 up-regulated and 977 down-regulated genes in the noise exposure group compared with the control group. Gene ontology (GO) analysis indicated that the most enriched categories of DEGs included protein folding and response to unfolding protein. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found over-represented pathways including protein processing in the endoplasmic reticulum, chaperones and folding catalysts, as well as arginine and proline metabolism. Specifically, many genes related to fatty acid and collagen metabolism were up-regulated in the noise exposure group. Taken together, our results indicate that exposure to noise stressors alters the swimming behavior of croaker, inducing endoplasmic reticulum stress, disrupting lipid metabolism, and causing collagen degradation in the sonic muscle of L. polyactis.


Assuntos
Ecossistema , Perciformes , Animais , Perfilação da Expressão Gênica/métodos , Transcriptoma , Músculos , Perciformes/genética , Colágeno/genética
13.
Medicine (Baltimore) ; 102(40): e35483, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800773

RESUMO

BACKGROUND: Xiao-ai-ping injection (XAPI) combined with chemotherapy has potential efficacy and less side effects in the treatment of non-small cell lung cancer (NSCLC). At present, there are many clinical studies on XAPI combined with chemotherapy in the treatment of NSCLC, but the results are different. The purpose of this study was to evaluate the efficacy and safety of XAPI combined with chemotherapy in the treatment of NSCLC by meta-analysis system. METHODS: The databases to be searched include PubMed, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature Database, Wanfang database, Chinese Scientific Journal Database, and so on. In addition, relevant journals and magazines will manually search in various fields as supplements. The search date is set from the establishment of the database until July 8, 2023. The 2 researchers will use Endnote X9 software for literature screening and data extraction and independently evaluate the quality. We then assessed the quality and risk of inclusion in the study and observed outcome indicators. RESULTS: A total of 28 trials were included in this study, 1947 patients with NSCLC (974 receiving XAPI combined chemotherapy and 973 receiving chemotherapy alone). The results of meta-analysis showed that: Objective tumor response rate of NSCLC (P < .00001). Improvement in Karnofsky performance score of NSCLC (P < .00001). Quality of life score of NSCLC (P < .00001). The result of CD3 + (P < .00001). The result of CD4 + (P < .00001). The result of CD8 + (P < .00001). The result of CD4+/CD8 + (P = .0001). Leukopenia (P < .00001). Thrombocytopenia (P < .00001). Hemoglobin decrease (P < .00001). Liver function (P = .04). Nausea and vomiting (P < .00001). CONCLUSION: Our meta-analyses demonstrated that XAPI adjunct with chemotherapy can improve the patient quality of life, reduce adverse reactions, and enhanced immune function, the treatment is effective and high safety. Which suggests that it might be used for NSCLC. However, a large sample of randomized controlled trials are needed to further study the long-term efficacy of XAPI.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Trombocitopenia , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Qualidade de Vida , Medicamentos de Ervas Chinesas/efeitos adversos , Trombocitopenia/induzido quimicamente
14.
ACS Appl Mater Interfaces ; 15(36): 42532-42540, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37646500

RESUMO

Machine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and operando characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction. Our approach works as a closed loop: catalyst synthesis-in situ measurement and characterization-database construction-ML analysis-catalyst design. Using artificial neural networks, the ML analysis revealed that the entropy values of multicomponent catalysts are proportional to their catalytic activity. The catalytic activities of high-entropy systems with different components varied little, and the overall catalytic activity was greater than that of the medium-low-entropy system. These findings will serve as a guideline for the design of catalysts.

15.
ACS Sens ; 8(7): 2713-2720, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37428950

RESUMO

Molecular and physical probes have been widely employed to investigate physicochemical properties and mechanisms of interfaces due to their ability to provide accurate measurements with temporal and spatial resolution. However, the direct measurement of electroactive species diffusion in ion-selective electrode (ISE) membranes and quantification of the water layer have been challenging due to the high impedance and optical opacity of polymer membranes. In the present work, carbon nanoelectrodes with ultrathin insulating encapsulation and good geometrical structure are reported as physical probes for direct electrochemical measurement of the water layer. The scanning electrochemical microscopy experiment exhibits positive feedback at the interface of the fresh ISE, and negative feedback after conditioning for 3 h. The thickness of the water layer was estimated to be ca. 13 nm. For the first time, we provide direct evidence that, during conditioning, the water molecules diffuse through the chloride ion selective membrane (Cl-ISM) until a water layer establishes at almost 3 h. Furthermore, the diffusion coefficient and concentration of oxygen molecules in the Cl-ISM are also directly electrochemical measured by introducing ferrocene (Fc) as a redox molecule probe. The oxygen concentration in the Cl-ISM decreases during conditioning, suggesting the diffusion of oxygen from ISM to the water layer. The proposed method can be used for the electrochemical measurement of solid contact, providing theoretical guidance and advice for the performance optimization of ISEs.


Assuntos
Carbono , Eletrodos Seletivos de Íons , Carbono/química , Polímeros/química , Oxirredução , Água/química
16.
Biomed Pharmacother ; 165: 115208, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499454

RESUMO

Myc target 1 (MYCT1), located at 6q25.2, is a crucial player in cancer development. While widely distributed in cells, its subcellular localization varies across different cancer types. As a novel c-Myc target gene, MYCT1 is subject to regulation by multiple transcription factors. Studies have revealed aberrant expression of MYCT1 in various cancers, impacting pivotal biological processes such as proliferation, apoptosis, migration, genomic instability, and differentiation in cancer cells. Additionally, MYCT1 plays a critical role in modulating tumor angiogenesis and remodeling tumor immune responses within the tumor microenvironment. Despite certain debated functions, MYCT1 undeniably holds significance in cancer development. In this review, we comprehensively examine the relationship between MYCT1 and cancer, encompassing gene structure, regulation of gene expression, gene mutation, and biological function, with the aim of providing valuable insights for cancer diagnosis and treatment.


Assuntos
Neoplasias , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-myc , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Proteínas Nucleares/genética
17.
ACS Appl Mater Interfaces ; 15(26): 31711-31719, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339110

RESUMO

Mn-based cation-disordered rocksalt oxides (Mn-DRX) are emerging as promising cathode materials for next-generation Li-ion batteries due to their high specific capacities and cobalt- and nickel-free characteristic. However, to reach the usable capacity, solid-state synthesized Mn-DRX materials require activation via postsynthetic ball milling, typically incorporating more than 20 wt % conductive carbon that adversely reduces the electrode-level gravimetric capacity. To address this issue, we first deposit amorphous carbon on the surface of the Li1.2Mn0.4Ti0.4O2 (LMTO) particles to increase the electrical conductivity by 5 orders of magnitude. Although the cathode material gravimetric first charge capacity reaches 180 mAh/g, its highly irreversible behavior leads to a first discharge capacity of 70 mAh/g. Subsequently, to ensure a good electrical percolation network, the LMTO material is ball-milled with a multiwall carbon nanotube (CNT) to obtain a 78.7 wt % LMTO active material loading in the cathode electrode (LMTO-CNT). As a result, a 210 mAh/g cathode electrode gravimetric first charge and 165 mAh/g first discharge capacity values are obtained, compared to the respective capacity values of 222 and 155 mAh/g for the LMTO material ball-milled with 20 wt % SuperP C65 electrode (LMTO-SP). After 50 cycles, LMTO-CNT delivers a 121 mAh/g electrode gravimetric discharge capacity, largely outperforming the value of 44 mAh/g of LMTO-SP. Our study demonstrates that while ball milling is necessary to achieve a significant amount of capacity of LMTO, a careful selection of additives, such as CNT, effectively reduces the required carbon quantity to achieve a higher electrode gravimetric discharge capacity.

18.
Appl Opt ; 62(10): 2656-2660, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132816

RESUMO

An enhanced ultraviolet (UV) nanosecond laser milling cutting method is innovatively adopted to cut carbon fiber reinforced plastic (CFRP) composites. This paper aims to achieve a more efficient and facile way to cut the thicker sheet cutting mode. The technology of UV nanosecond laser milling cutting is studied in detail. The effects of milling mode and filling spacing on the cutting effect are explored in milling mode cutting. Cutting with the milling method can obtain a smaller heat-affected zone at the slit entrance and a shorter effective processing time. When the longitudinal milling method is adopted, the machining effect of the lower side of the slit is better when the filling spacing is 20 µm and 50 µm, with no burr or other defects. Additionally, the filling spacing below 50 µm can obtain a better machining effect. The coupled photochemical and photothermal effects of UV laser cutting CFRP are elucidated, and the experiments verify this phenomenon successfully. Overall, it is anticipated that this study can offer a practical reference for UV nanosecond laser milling cutting CFRP composites and make contributions to military fields.

19.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769177

RESUMO

In cancer diagnosis, diverse microRNAs (miRNAs) are used as biomarkers for carcinogenesis of distinctive human cancers. Thus, the detection of these miRNAs and their quantification are very important in prevention of cancer diseases in human beings. However, efficient RNA detection often requires RT-PCR, which is very complex for miRNAs. Recently, the development of CRISPR-based nucleic acid detection tools has brought new promises to efficient miRNA detection. Three CRISPR systems can be explored for miRNA detection, including type III, V, and VI, among which type III (CRISPR-Cas10) systems have a unique property as they recognize RNA directly and cleave DNA collaterally. In particular, a unique type III-A Csm system encoded by Lactobacillus delbrueckii subsp. bulgaricus (LdCsm) exhibits robust target RNA-activated DNase activity, which makes it a promising candidate for developing efficient miRNA diagnostic tools. Herein, LdCsm was tested for RNA detection using fluorescence-quenched DNA reporters. We found that the system is capable of specific detection of miR-155, a microRNA implicated in the carcinogenesis of human breast cancer. The RNA detection system was then improved by various approaches including assay conditions and modification of the 5'-repeat tag of LdCsm crRNAs. Due to its robustness, the resulting LdCsm detection platform has the potential to be further developed as a better point-of-care miRNA diagnostics relative to other CRISPR-based RNA detection tools.


Assuntos
Proteínas Associadas a CRISPR , MicroRNAs , Humanos , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Proteínas Associadas a CRISPR/genética
20.
Int J Biol Macromol ; 232: 123105, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36603717

RESUMO

The development of high-performance composite films using biomass materials have become a sought-after direction. Herein, a green method to fabricate strong, flexible and UV-shielding biological composite film from wood cellulose skeleton (WCS), lignin nanoparticles (LNPs) and polyvinyl alcohol (PVA) was described. In the work, WCS and LNPs were prepared by chemical treatment of wood veneer and Enzymatic lignin, respectively. Then, WCS was infiltrated with the LNPs/PVA mixtures and dried to obtain composite films. WCS enhanced the mechanical properties of the composite films, the tensile stress reached to 85.8 MPa and the tensile strain reached to 6.39 %. The composite films with LNPs blocked over 98 % of UV-light, the water absorption decreased by 30 %, and the thermal stabilities were also improved. These findings would provide some references for exploring high quality biological composite films.


Assuntos
Lignina , Nanopartículas , Lignina/química , Celulose/química , Álcool de Polivinil/química , Madeira , Nanopartículas/química , Esqueleto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA