RESUMO
The short longevity of perovskite solar cells (PSCs) is the major hurdle toward their commercialization. In recent years, mechanical stability has emerged as a pivotal aspect in enhancing the overall durability of PSCs, prompting a myriad of strategies devoted to this issue. However, the mechanical degradation mechanisms of PSCs remain largely unexplored, with corresponding studies mainly limited to perovskite single crystals, neglecting the complexity and nuances present in PSC devices based on polycrystalline perovskite thin films. Herein, we reveal the underlying mechanisms of the mechanical degradation of formamidinium-based PSCs, which are the most prevalent high-performance PSC candidates. Under uniaxial tensile loads, we found that the degradation is mainly attributed to the sequential increase in the density of micropores and halide defects within the perovskite films. This phenomenon is consistent across various perovskite compositions and environmental conditions. Our findings elucidate mechanistic insights for more targeted mitigation strategies aimed at addressing the mechanical degradation of PSC devices.
RESUMO
Molecule-based selective contacts have become a crucial component to ensure high-efficiency inverted perovskite solar cells1-5. These molecules always consist of a conjugated core with heteroatom substitution to render the desirable carrier-transport capability6-9. So far, the design of successful conjugation cores has been limited to two N-substituted π-conjugated structures, carbazole and triphenylamine, with molecular optimization evolving around their derivatives2,5,10-12. However, further improvement of the device longevity has been hampered by the concomitant limitations of the molecular stability induced by such heteroatom-substituted structures13,14. A more robust molecular contact without sacrificing the electronic properties is in urgent demand, but remains a challenge. Here we report a peri-fused polyaromatic core structure without heteroatom substitution that yields superior carrier transport and selectivity over conventional heteroatom-substituted core structures. This core structure produced a relatively chemically inert and structurally rigid molecular contact, which considerably improved the performance of perovskite solar cells in terms of both efficiency and durability. The champion device showed an efficiency up to 26.1% with greatly improved longevity under different accelerated-ageing tests.
RESUMO
Perovskite photovoltaics, typically based on a solution-processed perovskite layer with a film thickness of a few hundred nanometres, have emerged as a leading thin-film photovoltaic technology. Nevertheless, many critical issues pose challenges to its commercialization progress, including industrial compatibility, stability, scalability and reliability. A thicker perovskite film on a scale of micrometres could mitigate these issues. However, the efficiencies of thick-film perovskite cells lag behind those with nanometre film thickness. With the mechanism remaining elusive, the community has long been under the impression that the limiting factor lies in the short carrier lifetime as a result of defects. Here, by constructing a perovskite system with extraordinarily long carrier lifetime, we rule out the restrictions of carrier lifetime on the device performance. Through this, we unveil the critical role of the ignored lattice strain in thick films. Our results provide insights into the factors limiting the performance of thick-film perovskite devices.
RESUMO
The black phase of formamidinium lead iodide (FAPbI3) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during crystallization1-4. This problem has made it difficult to formulate the fast crystallization process of perovskite and develop guidelines governing the formation of black-phase FAPbI3 (refs. 5,6). Here we use in situ monitoring of the perovskite crystallization process to report an oriented nucleation mechanism that can help to avoid the presence of undesirable phases and improve the performance of photovoltaic devices in different film-processing scenarios. The resulting device has a demonstrated power-conversion efficiency of 25.4% (certified 25.0%) and the module, which has an area of 27.83 cm2, has achieved an impressive certified aperture efficiency of 21.4%.
RESUMO
BACKGROUND: Low-grade glioma (LGG) is a crucial pathological type of glioma. The present study aimed to explore multiple RNA methylation regulator-related AS events and investigate their prognostic values in LGG. METHODS: The prognostic model for low-grade glioma was established using the LASSO regression analysis. To validate prognostic value, we performed Kaplan-Maier survival analysis, ROC curves and nomograms. The ESTIMATE algorithm, the CIBERSORT algorithm and the ssGSEA algorithm were utilized to explore the role of the immune microenvironment in LGG. Subsequently, we then used GO, KEGG and GSEA enrichment analysis to explore the functional roles of these genes. In addition, we employed the GDSC database to screen potential chemotherapeutic agents. RESULTS: Eight RNA methylation related AS events were involved in construct a survival and prognosis model, which had good ability of independent prediction for patients with LGG. Patients in the high-risk group had shorter life expectancy and higher mortality, while patients in the low-risk group had a better prognosis. We constructed a nomogram which showed an excellent predictive performance for individual OS. The risk score exhibited a close correlation with some immune cells and expression of immune checkpoints. Patients in high-risk group were characterized by immunosuppressive microenvironment and poor response to immunotherapy, and were sensitive to more chemotherapeutic drugs. Pathway and functional enrichment analyses further confirmed that significant differences existed in immune landscape between the two subgroups. CONCLUSION: The prognostic RNA methylation-related alternative splicing signature constructed could constitute a promising prognostic biomarker, which could serve to optimize treatment regimens.
Assuntos
Processamento Alternativo , Glioma , Humanos , Metilação , Glioma/genética , Nomogramas , RNA , Microambiente Tumoral/genéticaRESUMO
Stretchable and transparent electrodes (STEs) are indispensable components in numerous emerging applications such as optoelectrical devices and wearable devices used in health monitoring, human-machine interaction, and artificial intelligence. However, STEs have limitations in conductivity, robustness, and transmittance owing to the exposure of the substrate and fatigue deformation of nanomaterials under strain. In this study, an STE consisting of conductive materials embedded in in situ self-cracking strain-spread channels by wettability self-assembly is fabricated. Finite element analysis is used to simulate the crevice growth using the representative unit cell network and strain deformation using a random network. The embedded conductive materials are partly protected by the strain-opening crevice channel, and network dissociation is avoided under stretching, showing a maximum strain of 125%, a transmittance of approximately 89.66% (excluding the substrate) with a square resistance of 9.8 Ω sq-1, and high stability in an environment with high temperature and moisture. The wettability self-assembly coating process is verified and expanded to several kinds of hydrophilic inks and hydrophobic coating materials. The fabricated STE can be employed as a strain sensor in motion sensing, vital sign and posture feedback, and mimicking bioelectronic spiderweb with spatial gravity induction.
RESUMO
It has long been a challenge to develop strain sensors with large gauge factor (GF) and high transparency for a broad strain range, to which field silver nanowires (AgNWs) have recently been applied. A dense nanowire (NW) network benefits achieving large stretchability, while a sparse NW network favors realizing high transparency and sensitive response to small strains. Herein, a patterned AgNW-acrylate composite-based strain sensor is developed to circumvent the above trade-off issue via a novel ultrasonication-based patterning technique, where a water-soluble, UV-curable acrylate composite was blended with AgNWs as both a tackifier and a photoresist for finely patterning dense AgNWs to achieve high transparency, while maintaining good stretchability. Moreover, the UV-cured AgNW-acrylate patterns are brittle and capable of forming parallel cracks which effectively evade the Poisson effect and thus increase the GF by more than 200-fold compared to that of the bulk AgNW film-based strain sensor. As a result, the AgNW-based strain sensor possesses a GF of â¼10,486 at a large strain (8%), a high transparency of 90.3%, and a maximum stretchability of 20% strain. The precise monitoring of human radial pulse and throat movements proves the great potential of this sensor as a measurement module for wearable healthcare systems.
RESUMO
Electrophoretic display encountered several challenges towards high frame rate applications, such as long response time and high driving voltage. In this study, liquid crystal additive doping can simultaneously increase the response speed by 2.8 times and reduce the driving voltage to half of the initial value of electrophoretic dispersion. The backflow effect of liquid crystal, which induces an inversely electrorheological effect and facilitates the reverse micelles' dielectrophoretic separation, was suggested to be the main reason for the performance improvement. The proposed method is facile and effective which shows promising potential for fast response and low power consumption e-paper applications.